Adaptive Truncated Sequential Tests and the Bonferroni Procedure

Martin Posch¹ Andreas Futschik²

¹Section of Medical Statistics
²Department of Statistics and Operation Research
²Core Unit for Medical Statistics and Informatics
Medical University of Vienna

ROeS Seminar 2007, Bern
A Simple Method to Construct Sequential Tests

- X_1, \ldots, X_n ... i.i.d. random variables
- $X_k = (X_1, \ldots, X_k)$ first k observations
- $f : \mathbb{R}^n \to \{0\} \cup [1, \infty)$ with $E_{H_0}\{f(X_n)\} = \alpha$

A truncated sequential test

Reject H_0 after the k-th observation, if

$$E_{H_0}\{f(X_n) | X_k\} \geq 1$$

1. Type I error rate $\leq \alpha$
2. Under appropriate conditions:
 Type I error rate $\rightarrow \alpha$ as $n \rightarrow \infty$
Some comments

• \(E\{f(X_n)|X_n\} = f(X_n) \).
• In the final analysis the test rejects whenever
 \[f(X_n) \geq 1. \]
• Let \(\varphi \in \{0, 1\} \) be the decision function of any test. With \(f(X_n) = \varphi \) the proposed procedure (typically) gives the fixed sample test.
Example

Testing Scenario

- Test of
 \[H_0 : \mu = 0 \text{ against } H_1 : \mu > 0 \]
 for the mean of i.i.d. \(N(\mu, 1) \) distributed observations.
- \(n \) . . . maximal sample size
- \(p = 1 - \Phi\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_n \right) \) . . . p-value of fixed sample z-test
A Family of Sequential Tests

\[f(p) = \begin{cases}
\gamma & \text{if } p \leq \alpha / \gamma \\
0 & \text{otherwise}
\end{cases} \quad (\gamma \geq 1) \]
A Family of Sequential Tests

\[f(p) = \begin{cases}
\gamma & \text{if } p \leq \alpha / \gamma \\
0 & \text{otherwise}
\end{cases} \quad (\gamma \geq 1) \]
A Family of Sequential Tests

\[f(p) = \begin{cases} \gamma & \text{if } p \leq \frac{\alpha}{\gamma} \\ 0 & \text{otherwise} \end{cases} \quad (\gamma \geq 1) \]
Level and Conditional Expectation

\[f(p) = \begin{cases} \gamma & \text{if } p \leq \alpha/\gamma \\ 0 & \text{otherwise} \end{cases} \]

- \(E_{H_0}\{f(p)\} = \gamma \frac{\alpha}{\gamma} = \alpha \)
- \(E_{H_0}\{f(p)|X_k\} = \gamma \left[1 - \Phi \left(\frac{z_{1-\alpha/\gamma} - \sqrt{\frac{1}{n} \sum_{i=1}^{t} X_k}}{\sqrt{1 - k/n}} \right) \right] \)

Corresponds to stochastic curtailment stopping rule (LAN, SIMON, HALPERIN, 1982).
An example path

\[f(p) = \begin{cases}
2 & \text{if } p \leq \alpha/2 \\
0 & \text{otherwise}
\end{cases} \]
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$$f(p) = \begin{cases}
\gamma & \text{if } p \leq \frac{\alpha}{\gamma} \\
0 & \text{otherwise}
\end{cases}$$

- $E_{H_0}(f(p)|X_k) = 1 \iff$
 $$\sum_{i=1}^{k} X_i = z_{1-\alpha/\gamma} \sqrt{n} - z_{1-1/\gamma} \sqrt{n} - k = a(k)$$

- Special cases:
 - $\gamma = 1$: fixed sample case
 - $\gamma = 2$: $a(k) = z_{1-\alpha/2}$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.8$

![Graph showing sequential boundaries for the partial sums with $\gamma = 1.8$.]
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.3$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.1$
Sequential Boundaries for the partial sums \(\sum_{i=1}^{k} X_i \)
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.01$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 2.0$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 100.0$
Sequential Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1000.0$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0}\{ f(X_n) | X_k \}$ and define the stopping time

$$T := \begin{cases}
 n & \text{if all } \psi_k < 1 \\
 \min(k : \psi_k \geq 1) & \text{otherwise}
\end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0}\{f(X_n)|X_k}\}$ and define the stopping time

$$T := \begin{cases} n & \text{if all } \psi_k < 1 \\ \min(k : \psi_k \geq 1) & \text{otherwise} \end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0} \{ f(X_n) | X_k \}$ and define the stopping time

$$T := \begin{cases}
 n & \text{if all } \psi_k < 1 \\
 \min(k : \psi_k \geq 1) & \text{otherwise}
\end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0}\{f(X_n)|X_k\}$ and define the stopping time

$$T := \begin{cases} n & \text{if all } \psi_k < 1 \\ \min(k : \psi_k \geq 1) & \text{otherwise} \end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0}\{f(X_n)|X_k\}$ and define the stopping time

$$T := \begin{cases} n & \text{if all } \psi_k < 1 \\ \min(k : \psi_k \geq 1) & \text{otherwise} \end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
The sequential procedure controls the Type I error rate

Let $\psi_k := E_{H_0}\{f(X_n)|X_k\}$ and define the stopping time

$$T := \begin{cases} n & \text{if all } \psi_k < 1 \\ \min(k : \psi_k \geq 1) & \text{otherwise} \end{cases}$$

The sequential test is given by

$$\varphi = \min(\psi_T, 1)$$

Proof:

ψ_k is a martingale. Optional stopping theorem:

$$P(\varphi = 1) = E\{\min(\psi_T, 1)\} \leq E\{\psi_T\} = \psi_0 = E\{f(X_n)\} = \alpha$$
Asymptotics

Proposition

Assume f is a bounded, monotonic function of an asymptotically linear test statistics.

Then asymptotically (as $n \to \infty$)

1. the sequential test has level α.
2. Assume $P_{H_0}\{f(X_n) = 1\} = 0$. Then

\[P\{ T < n | H_0 \text{ is rejected} \} = 1. \]

Applications

Sign Test, Binomial Test, z-Tests, t-Tests, Likelihood Ratio Tests
Sequential Tests with Futility Stopping

- $f : \mathbb{R}^n \to (-\infty, 0) \cup [1, \infty)$ with $E_{H_0}\{f(X_n)\} = \alpha$
- Reject H_0 after the k-th observation, if
 $$E_{H_0}\{f(X_n)\mid X_k\} \geq 1$$
- Accept H_0 after the k-th observation, if
 $$E_{H_0}\{f(X_n)\mid X_k\} \leq 0$$
- For asymptotically linear test statistics:
 Type I error rate $\rightarrow \alpha$ for $n \rightarrow \infty$
A Family of Tests with Futility Stopping

\[f(p) = \begin{cases}
\gamma & \text{if } p \leq \alpha \\
-\alpha \frac{\gamma - 1}{1 - \alpha} & \text{otherwise}
\end{cases}, \quad E_{H_0}\{f(p)\} = \alpha \]
A Family of Tests with Futility Stopping

\[f(p) = \begin{cases}
\frac{\gamma}{1-\alpha} & \text{if } p \leq \alpha \\
-\alpha \frac{\gamma-1}{1-\alpha} & \text{otherwise}
\end{cases} \]

\[E_{H_0}\{f(p)\} = \alpha \]

\[\gamma = 2 \]
A Family of Tests with Futility Stopping

$$f(p) = \begin{cases} \frac{\gamma}{\alpha} & \text{if } p \leq \alpha \\ -\alpha \frac{\gamma^{-1}}{1-\alpha} & \text{otherwise} \end{cases}$$

$$E_{H_0}\{f(p)\} = \alpha$$

$$\gamma = 3$$
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.05$
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 1.2$
Boundaries for the partial sums \(\sum_{i=1}^{k} X_i \)

\(\gamma = 1.5 \)
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$
Boundaries for the partial sums $\sum_{i=1}^{k} X_i$

$\gamma = 4.0$
Uniform Improvement of the Bonferroni Test

- $H_A, H_B \ldots$ considered null hypotheses
- $X^A_n, X^B_n \ldots$ data vectors for H_A, H_B.
- $p_A, p_B \ldots$ univariate p-values for H_A, H_B
- The Bonferroni test for $H = H_A \cap H_B$ is given by
 \[
 \varphi^B = \min\{1_{\{p_A \leq \alpha/2\}}, 1_{\{p_B \leq \alpha/2\}}\}.
 \]

- Let $f(p_A, p_B) = 1_{\{p_A \leq \alpha/2\}} + 1_{\{p_B \leq \alpha/2\}}$.
- $E_H\{f(p_A, p_B)\} = \alpha$, whatever the dependency structure.
- $\varphi^B \leq f(p_A, p_B)$
Sequential improvement of the Bonferroni Test

Reject $H = H_A \cap H_B$ after the k-th observation, if

$$E_H[1_{\{p_A \leq \alpha/2\}}|X_k^A] + E_H[1_{\{p_B \leq \alpha/2\}}|X_k^B] \geq 1$$

- Rejects whenever the classical Bonferroni test rejects
- Compared to the fixed sample Bonferroni test:
 - higher power
 - lower expected sample size
 - asymptotically exhausts the level for all dependence structures
Simulation Study

- Tests for the means of normal data
- Bivariate normal data with correlation ρ
Type I Error Rates

\[-\quad \alpha \quad \text{Level} \quad \frac{\alpha}{2} \quad \rho\]

- Bonferroni Test
- Sequential Test

\(n = 275 \)
\(\alpha = 0.05 \)
Power to reject $H_A \cap H_B$

- Bonferroni Test
- Sequential Test

$n = 275$
\(\alpha = 0.05\)
\(\mu_1 = 0.15\sigma\)
\(\mu_2 = 0.15\sigma\)
Expected Sample Size

- Bonferroni Test - Sequential Test

\[n = 275 \]
\[\alpha = 0.05 \]
\[\mu_1 = 0.15 \sigma \]
\[\mu_2 = 0.15 \sigma \]
Some Comments

- The sequential test rejects the intersection hypothesis after the k-th observation, if
 \[
 \sum_{i=1}^{k} (X_i^A + X_i^B) \geq 2\sqrt{n}z_{1-\alpha/2}
 \]

- The asymptotic α spending function is ($t = k/n$)
 \[
 \alpha(t) = 2 \left[1 - \Phi \left(\frac{\sqrt{2}z_{1-\alpha/2}}{\sqrt{t(1-\rho)}} \right) \right]
 \]
The Asymptotic α-Spending Function

$\rho = -1.0$
The Asymptotic α-Spending Function

$\rho = 0.0$

$t = k/n$

$\alpha(t)$
The Asymptotic α-Spending Function

\[\alpha(t) = \rho \frac{t}{n} \]

\[\rho = 0.2 \]
The Asymptotic α-Spending Function

\[\alpha(t) = \rho = 0.4 \]
The Asymptotic α-Spending Function

\[\alpha(t) = \rho = 0.6 \]

\[t = k/n \]
The Asymptotic α-Spending Function

$$\rho = 0.8$$
The Asymptotic α-Spending Function

\[\rho = 1.0 \]
Generalizations

- Tests for elementary hypotheses with the closure principle
 - Test the intersection hypothesis with the sequential Bonferroni test
 - Test the elementary hypotheses with the sequential test defined by
 \[2 \cdot 1_{\{p \leq \alpha/2\}} \]
- Weighted Bonferroni test for \(m \)-hypotheses
- General cut-off tests (Röhmel & Streitberg, 1987)
Adaptive Sequential Tests

- Truncated sequential test defined by
 \[f : \mathbb{R}^n \rightarrow \{0\} \cap [0, 1] \]
- interim analysis after \(k \) observations
- choose a sample size \(m \) and a secondary sequential trial defined by a function \(g \)
 \[g : \mathbb{R}^m \rightarrow \{0\} \cap [0, 1], \quad E\{g(X'_m)\} = E\{f(X_n)|X_k\} \]
 where \(X'_m \) denotes the vector of future observations.

MÜLLER & SCHÄFER, 2004
Summary

- Simple construction principle for truncated sequential tests
- Incorporating futility stopping
- Uniform improvement of Bonferroni tests and other cut-off tests
- Easily extended to an adaptive test