AngiomiR-126 expression and secretion from circulating CD34\(^+\) and CD14\(^+\) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics

Pavani Mocharla, Sylvie Briand et al
Angiogenesis

- AngiomiR-126 expression in PBMCs of type 2 diabetic patients and healthy controls

- Differences between CD34+/CD14 +, CD34+/CD14 -, CD34-/CD14 +, and CD34-/CD14 - PBMC subsets

- miR-126 levels in supernatant, microparticles and exosomes

- PBMCs are suggested to raise angiogenesis in ischemia.

- Diabetic patients have a reduced cardiovascular repair function and an impaired neovascularization.
• CD34⁺ - hematopoietic progenitor cells, tumor cells
• CD14⁺-monocytes, macrophages

• microRNAs (miRs) are non-coding RNA molecules, which regulate gene expression

• AngiomiRs are microRNAs regulating angiogenesis
Methods in vitro

- Positive and negative selection of CD34/CD14 cells
- MicroRNA RT PCR array
- Anti-miR-126 and miR-mimic-126 transfection
- In vitro tube formation assay (matrigel plugs, co-culture with Human aortic endothelial cells)
Methods in vivo

- Matrigel basement membrane matrix with
 - miR-mimic-126,
 - anti-miR-126,
 - scrambled RNA,
 - supernatant,
 - microvesicles and
 - exosomes
 was injected subcutaneousley in mice along the abdominal midline

- Male NRMI nu/v mice were used for transplantation of human PBMC subpopulation

- Diabetes was induced in C57BL/6 mice with streptozotocin
Positive selection

1. Steps 1–4: Mix excess primary antibody with magnetic secondary antibody.

2. Steps 5–9: Incubate and remove excess primary antibody.

Negative selection

4. Steps 11–14: Incubate and wash to remove contamination.

5. Step 15: Target is enriched.

6. Steps 16 and 17: Perform amplification directly on the bead substrate, resulting in target genomic DNA ready for high-throughput sequencing.

Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA; Nature Protocols 8, 2404–2412 (2013) doi:10.1038/nprot.2013.147 Published online 07 November 2013
Results

MicroRNA expression

originally published online November 8, 2012
originally published online November 8, 2012
originally published online November 8, 2012.
Antiangiogenic miR

originally published online November 8, 2012
Transfection

Before Pulse
- Cell membrane

During E-field
- Introduce genes/drugs
- Electric field induces a voltage across cell membrane

After Pulse
- Cell "heals" with gene/drug inside
originally published online November 8, 2012
Microvesicles and Exosomes

• Supernatant:
 – Centrifugation of PBMCs in cell culture for 1000g for 10min

• Microvesicles:
 – Pellet of centrifugated supernatant (16 000g for 60min)

• Exosomes:
 – Pellet of centrifugated microvesicle-supernatant (120 000g for 60min)

• 220 000g-pellet:
 – Pellet of centrifugated exosome-supernatant (220 000g for 60min)
Effects of High Glucose/Diabetes

originally published online November 8, 2012
originally published online November 8, 2012
Discussion

• Higher AngiomiR-126 expression and secretion in microvesicles and exosomes in CD34+ cells

• Modulation of AngiomiR-126 expression has a critical effect on proangiogenic capacity

• Reduced AngiomiR-126 expression in patients with Diabetes
• After myocardial infarction in AngiomiR-126 knock out mice, decreased vascular growth in the border zone

• Proangiogenic AngiomiR-126 is enriched in microvesicles and exosomes, which leads to increased tube formation capacity

• MiR-100 expression inhibits proliferation for endothelial cells and tube formation

• MiR-10b promotes endothelial cell migration and tube formation
Thank you for your attention!