Common clonal origin of central and resident memory T cells following skin immunization

Olivier Gaide1,5, Ryan O Emerson2, Xiaodong Jiang1, Nicholas Gulati3, Suzanne Nizza1, Cindy Desmarais2, Harlan Robins4, James G Krueger3, Rachael A Clark1 & Thomas S Kupper1

Presented by Lucas Nemec

Introduction

T-Cell Activation and Diversity

Introduction

Memory T cell subsets

Introduction

Circulation of Memory T cell subsets

- Remain at tissue only
- Scan for Antigen everywhere
- Remain in lymph and blood
- Scan for new antigen

Immunity 41, 886–897 (2014)
Introduction

Central memory T cell (T_{CM})

- CCR7
- CD62L (L-selectin, vascular addressin)
- Limited effector function or protective capacity
- Ability to replenish T_{RM} compartment upon activation

Effector memory T cell (T_{EM})

- Low expression of CCR7 and CD62L
- CLA (E-selectin ligand), CCR4, CCR8, CCR10 \rightarrow skin homing
- $\alpha 4\beta 7$, CCR9 \rightarrow gut homing

Introduction

Tissue-resident memory T cells (T_{RM})

- Reside in epithelial barrier tissue
 - gastrointestinal tract (GI)
 - respiratory tract
 - reproductive tract
 - skin

Introduction

Tissue-resident memory T cells (T_{RM})

- CD69^+ (involved in tissue retention)
- Mostly CD103^+
- Sphingosine 1 phosphate receptor (S1P1)↓
- Kruppel-like factor 2 (KLF-2)↓

Tissue-resident memory T cells (T_{RM}) in tissue-specific autoimmune and inflammatory diseases

Aim/Questions addressed

- The investigation of the clonal origin of T_{CM} and T_{RM}
- Effect on abundance of T_{RM} after repetitive sensitization
- Differences in kinetics between allergen-specific T_{CM} and T_{RM}
- Generation of T_{RM} due to DPCP induced ACD
Methods

High-throughput sequencing (HTS) of T cell receptor (TCR) β-chain (TRB)

- **CDR3** sequence (part of variable region, highly specific)
- Possibility to track thousands of unique T cells

Nat. Med. 21, 688–697 (2015)

http://www.irepertoire.com/the-immune-repertoire
Methods

Antigen challenge to skin

- Ovalbumin (OVA) + adjuvant cholera toxin (CT)
- Dinitrofluorobenzene (DNFB)
- Modified Vaccinia Ankara (MVA)

Methods

Antigen challenge to skin

- Fingolimod (FTY720) T cell retention

Figure 1 Mechanism of action of FTY720

Methods

Parabiotic surgery

- Sex- and age-matched mice
- Connection of a sensitized mouse to a naive mouse
- Common blood circulation
- Separation after 4 weeks

Nat. Med. 21, 688-697 (2015)
Methods

Study subjects and skin samples

- 11 healthy volunteers
- Diphenylcyclopropenone (DPCP) immunization and challenging → allergic contact dermatitis (ADC)
- Skin biopsies (day 4, 13 and month 4)
Results

Skin immunization with $\text{OVA} + \text{CT}$ generates skin T_{RM} cells and TCR-identical T_{CM} cells in LNs.

$I =$ inguinal LN
$T =$ tail skin
$E =$ ear skin
$D =$ draining LN (ear draining)

Results

Skin immunization with DNFB generates skin T_{RM} cells and TCR-identical T_{CM} cells in LN.

$I = \text{inguinal LN}$
$T = \text{tail skin}$
$E = \text{ear skin}$
$D = \text{draining LN (ear draining)}$

Results

Skin immunization with MVA generates skin T_{RM} cells and TCR-identical T_{CM} cells in LNs

I = inguinal LN
T = tail skin
E = ear skin
D = draining LN (ear draining)

Nat. Med. 21, 688-697 (2015)
Results

Repetitive sensitization increases the abundance of T\textsubscript{RM} cells in skin

Results

Repetitive sensitization increases the abundance of T_{RM} cells in skin

<table>
<thead>
<tr>
<th>Mouse</th>
<th>0 exposures (tail)</th>
<th>2 exposures (right ear)</th>
<th>6 exposures (left ear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse 1</td>
<td>26</td>
<td>114</td>
<td>381 (36 in LN)</td>
</tr>
<tr>
<td>Mouse 2</td>
<td>52</td>
<td>229</td>
<td>406 (60 in LN)</td>
</tr>
<tr>
<td>Mouse 3</td>
<td>62</td>
<td>220</td>
<td>256 (15 in LN)</td>
</tr>
</tbody>
</table>

f:

- No. of expanded clones (>10 cells)
 - Mouse 1: 18 (16 in LN)
 - Mouse 2: 30 (13 in LN)
 - Mouse 3: 2 (2 in LN)

Results

\(T_{RM}\) cells mediate rapid skin contact hypersensitivity (CHS) responses, whereas \(T_{CM}\) cells mediate delayed attenuated CHS responses.

\(T_{RM} \) cells mediate rapid skin contact hypersensitivity (CHS) responses, whereas \(T_{CM} \) cells mediate delayed attenuated CHS responses.
Results

Contact dermatitis to DPCP induces T_{RM} cells in human skin.

Contact dermatitis to DPCP induces T_{RM} cells in human skin.
Summary

• Skin immunization with different antigens generates skin T_{RM} cells and TCR-identical T_{CM} cells in LNs.

• Repetitive sensitization increases the abundance of T_{RM} cells in skin.

• T_{RM} cells mediate rapid skin contact hypersensitivity (CHS) responses, whereas T_{CM} cells mediate delayed attenuated CHS responses.

• Contact dermatitis to DPCP induces T_{RM} cells in human skin.

Conclusion

• Allergic contact dermatitis (ACD) mediation by T_{RM} explains recurrent and site-specific nature of disease.

• TCR-identical T_{RM} (peripheral tissue) and T_{CM} (LN) \rightarrow two compartments of memory T cells with identical TCR but different effector properties.

• Human diseases that recur episodically in barrier tissue may be mediated by T_{RM}.
Thank you for your attention