The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment

Nature medicine 08 2015

Irina Gessl JC Translational Immunology
BACKGROUND
Rheumatoid arthritis (RA)

- Systemic, inflammatory, autoimmune disease
- Prevalence: 1%, ♀, 55-65 y

Etiology
- Genetic and environmental factors
- Peridontitis
- T cell activation, IL-1, TNF-alpha, IL-6
- RF, ACPA, synovitis

Therapy
- cDMARDs, bDMARDs, NSAIDs, glucocorticoids, OP → “Treat
- SDAI, CDAI, DAS28
microbiome

• Microorganisms- gut, oral
• “additional organ”
• 100x more genes than human host
• Stable in individual but heterogeneous!
• Stress, smoking, diet, birthmode, ……..
• Influences metabolic and immune homeostasis
Aim

• Assess oral and gut microbiome in RA patients vs. HC

• Diagnostic?
• Change after treatment?
• Prognostic?
METHODS
Sample collection

Fecal samples:
• Frozen, extracted

Dental samples:
• Dental plaques scraped from dental surfaces
• Lysis with proteinkinase K
• DNA extraction

Saliva samples
• Posterior pharynx
• Lysed, extracted
patients

RA patients at Peking Union Medical Hospital, 18-65 years

- Exclusion: chronic serious infection, any current infection, cancer, pregnant or lactating women

Healthy controls: 18-65y, normal liver and kidney function, normal routine blood test, ESR, glucose, blood lipids, blood pressure

- Exclusion: chronic serious infection, any current infection, cancer, pregnant or lactating women, any autoimmune disease
fecal samples

- 77 treatment naïve RA patients
- 80 unrelated healthy controls
- 17 treatment naïve RA patients
- 17 healthy relatives
- 21 DMARD treated RA patients

=212
Oral samples

Dental:
• 54 treatment naïve RA patients
• 51 controls

Saliva:
• 51 treatment naïve RA patients
• 47 controls
Metagenomic sequencing

- DNA broken up randomly
- Paired-end metagenomic sequencing (Illumina platform)

Figure 4. Paired-End Sequencing and Alignment

Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.
Gene catalog construction

- Gene prediction with GeneMark v2.7d
- Integrated data into an existing gut microbial reference-gene catalog
- Redundant genes removed
- 212 Fecal samples: → 3,800,011 genes
- 203 oral samples: → 3,234,997 genes
RESULTS
Gut microbiome

- Gut microbial diversity and richness- similar
- Molecular mimicry of RA-associated antigens
RA vs. HC: different gut microbiome

- 117,219 genes different in RA vs. HC (Wilcoxon rank sum)
- → clustered into Metagenomic linkage groups (MLG) according to correlated abundance variation
- 88 MLGs with at least 100 genes each

- RA gut enriched in Gram positive bacteria and depleted in Gram negative bacteria
Correlation with clinical indices

Positive (RA)

- IgA (C. asparagiforme, Bacterioides sp.)
- IgG (Lactobacillus sp.)
- Platelet count (E. faecalis)

Negative (HC)

- IgA, IgG (Con-7851, B. bifidum)
- Anti-CCP, RF (Haemophilus sp., Strep. Austr.,)
RA vs. HC: different oral microbiome

• Dental: 371,990 gene markers different
• Salivary: 258,055 gene markers different

• \rightarrow 171 dental MLGs, 142 salivary MLGs
Correlation with clinical indices

Negative (HC)

• CRP, anti-CCP (Aggregatibacter sp, Haemophilus spp., Neisseria spp,...)

RA

• Anti-CCP
• CRP
• RF
Gut vs. oral

• covariation of bacteria at different body sites
Gut vs. oral

a- correlation MLPs gut and dental
Blue \rightarrow Spearman’s correlation coefficient > 0.4, $P < 0.05$; red \rightarrow Spearman’s correlation coefficient < -0.4, $P < 0.05$
Gut vs. oral

b- correlation MLPs gut and salivary
Blue \rightarrow Spearman’s correlation coefficient > 0.4, $P < 0.05$; red \rightarrow
Spearman’s correlation coefficient < -0.4, $P < 0.05$
Diagnostic?

- random forest calculation based on MLGs
- Suggest using 8 (of 88) fecal MLGs
- 6 dental MLGs
- 2 salivary MLGs

- Classification based on 2 sides -> no subject misclassified except for 1 relative HC
- Both treatment naïve and DMARD treated RA patients

- EXCEPTION: dental samples from RA with low disease activity
Figure 5: Gut and oral MLGs can be used to distinguish RA patients from healthy controls. (a,d,f)Receiver operating characteristic curves for fecal (a), dental (d) and salivary (f) training sets comprising samples from treatment-naïve RA subjects and unrelated controls ($N = 157, 100$ and 94 for fecal, dental and salivary samples, respectively). AUC = 0.9396 for fecal, 0.8702 for dental and 0.8135 for salivary samples. The 95% confidence intervals (CIs) are shown as shaded areas. (b) Classification of fecal samples from 17 controls and 17 RA subjects, either consanguineous or nonconsanguineous relatives. Open circles, controls; filled circles, RA subjects. (c,e,g) Classification of fecal (c), dental (e) and salivary (g) samples from DMARD-treated RA patients ($N = 40, 37$ and 24 for fecal, dental and salivary samples, respectively), shaded on a scale relative to DAS28. NA (no shading), DAS28 not available. The classification results for all samples are listed in Supplementary Table 1. Diagonal lines in graphs mark an AUC of 0.5 (i.e., random classification). Horizontal lines mark the probability cutoff (0.5).
Influence of DMARD treatment

- Samples before and 3 months after DMARD start
- HC MLGs increased, especially in patients with better improvement
- MLGs associated with CRP, anti-CCP, RF
Influence of DMARD treatment

More dental and salivary MLGs significant changes than gut MLG
Influence of DMARD treatment

Change of dental MLGs depending on treatment outcome

Bigger difference in patients with better improvement!
Influence of DMARD treatment

Cross-validated random forest models for dental MLPs before treatment:

prediction of improvement after DMARD treatment

[Graph showing ROC curve with AUC of 88.1%]
Influence of DMARD treatment

Change of salivary MLGs affected by DMARD treatment
Discussion

- Alterations in RA-associated Gut and oral microbiomes
- Partly relieved by DMARD treatment
- Gut and oral MLGs correlate with each other
- Gut and oral MLGs correlate with clinical indices
- Allow classification (RA/HC)
- Allow prediction of treatment outcome
Outlook

• Pathogenesis?

• Diagnosis?

• Prognosis?

• Treatment decision?