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Summary. Flexible designs allow large modifications of a design during an experiment. In particular,
the sample size can be modified in response to interim data or external information. A standard flexible
methodology combines such design modifications with a weighted test, which guarantees the type I error
level. However, this inference violates basic inference principles. In an example with independent N(μ, 1)
observations, the test rejects the null hypothesis of μ ≤ 0 while the average of the observations is negative.
We conclude that flexible design in its most general form with the corresponding weighted test is not valid.
Several possible modifications of the flexible design methodology are discussed with a focus on alternative
hypothesis tests.
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1. Introduction
Flexible designs have attracted great interest since the work
of Bauer and Köhne (1994) and Proschan and Hunsberger
(1995). The methodology offers an option to change the de-
sign during an experiment. This flexibility makes it pos-
sible to adapt the design of later stages to the findings
of earlier ones. It is also possible to allow external infor-
mation to influence the redesign of the experiment. Many
features can be modified. In a clinical trial, for exam-
ple, the experimenter may drop doses, change the null hy-
pothesis, modify the sample size, etc., possibly after eval-
uating unblinded data. Fisher (1998) discussed a number
of different modifications and Posch, Bauer, and Brannath
(2003) cited several papers that have investigated such pos-
sibilities. Regardless of how the idea of flexible designs
is utilized, it is possible to protect the overall type I
error rate by applying a predefined weighting of the data ob-
tained in the different stages.

Most of the interest in flexible designs has focused on
methods for sample size modification based on observed in-
terim data. The usual analysis of such designs, treated in
Section 2.2, uses a statistic with weights that are not pro-
portional to the information obtained in the different stages.
Thus, equally informative observations will be weighted un-
equally. In this article we discuss whether this analysis is
valid. Several alternative analyses, using either weighted or
unweighted statistics, will also be considered.

The literature on flexible designs has almost solely taken
examples from clinical trials. This is understandable, to some
extent, as clinical trials constitute an important and very ex-
pensive class of experiments. Regulatory authorities have also
shown an interest in this type of design. A reflection paper on
flexible designs has been issued by the European Medicines
Agency (2006) and several statisticians employed by the FDA
have written about the subject. One clinical trial application

is found in Zeymer et al. (2001). However, flexible designs can
potentially be applied to virtually any experiment in which
data are collected sequentially. One example in the field of
genetics is given in Scherag et al. (2003). Owing to the wide
range of potential applications of flexible designs, we believe
that questions concerning the validity of the design and anal-
ysis of such experiments are of interest to a wide statistical
community.

In Section 2, we discuss flexible designs, including sample
size modifications (SSM) based on interim estimates of ef-
fect size, and compare them with traditional group sequential
designs. Sample size modifications based only on variance es-
timates (Stein, 1945; Wittes and Brittain, 1990; Gould, 2001)
will not be discussed. Section 3 considers more specifically
the case of SSM. We describe some of the criticism previously
raised against SSM (Jennison and Turnbull, 2003; Tsiatis and
Mehta, 2003). Then we examine SSM in the light of basic
inference principles and discuss the validity of the inference
based on the weighted analysis. Our position is that unre-
stricted use of the weighted analysis is not sound. Section 4
discusses alternative analyses based on an unweighted statis-
tic, using a design with a prespecified SSM rule. The combina-
tion of a weighted and an unweighted statistic is also consid-
ered. The resulting test does not require that the SSM rule is
fully specified and therefore allows full flexibility. Conclusions
are given in Section 5.

2. Different Types of Sequential Designs
2.1 Group Sequential Designs
Group sequential designs (Pocock, 1977; O’Brien and
Fleming, 1979; Jennison and Turnbull, 2000) are well ac-
cepted. A group sequential design consists of a number of
stages where interim analyses are made after each stage. A
fundamental property of the group sequential design is the
possibility of stopping the experiment at an interim analysis
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to either accept or reject the null hypothesis. This decision
is typically based on a sufficient statistic. Critical values for
stopping early are adjusted to achieve a certain type I error.
Group sequential designs require some prespecifications (e.g.,
of the error spending function). The sample sizes of the stages
are not allowed to depend on the interim effect estimates.

2.2 Flexible Designs
A flexible design has an arbitrary number of stages that are
carried out in sequence, just as in a group sequential design.
However, flexible designs require fewer prespecifications. The
sample sizes of the stages can be chosen freely, even depend-
ing on unblinded interim estimates of the treatment effect.
A conventional, sequential or nonsequential, design may be
transformed into a flexible one at any time and unplanned in-
terim analyses may be added (Müller and Schäfer, 2001). All
that is required when applying the weighted test (Bauer and
Köhne, 1994) is that the experimenter specifies the weight, vk ,
for the data from stage k independently of the data from the
kth stage and from later stages. This usually means that the
weight is determined before the data in the stage are collected.
In a fully blinded trial, this determination can be made later
but must be done before breaking the blind. The weights have
to be nonnegative, vk ≥ 0, and sum up to unity,

∑
k
vk = 1.

The number of stages, m, is determined simply by assigning
in the last stage the remaining weight vm = 1 −

∑m−1
k=1 vk > 0.

We will in the following assume that the observations from the
different stages are independent given the design of the stages.

One way of viewing the weighted analysis of a flexible de-
sign is to temporarily consider the stages as separate trials
and calculate a p-value, pk , for each stage k. These p-values
are weighted together in an overall test. The joint null hy-
pothesis H = H1 ∩ · · · ∩ Hm is tested by calculating the over-
all p-value as p = Φ(

∑m

k=1
√
vkΦ

−1(pk)), where Φ denotes the
cumulative distribution function of the standard normal dis-
tribution (Lemacher and Wassmer, 1999). There are other
possible ways of weighting the p-values, but these will not be
discussed here because they do not change the essence of the
problem (see, e.g., Bauer and Köhne, 1994).

We will assume that under H the p-values from the different
stages are independent and uniformly distributed on [0, 1].
(This assumption is easily relaxed to the general situation,
with p-values stochastically larger than the uniform distribu-
tion, without altering the validity of the argument given here;
Brannath, Posch, and Bauer, 2002.) Thus Zk = −Φ−1(pk )
follows a standard normal distribution. Due to the indepen-
dence of the p-values, this holds also for the weighted statis-
tic Zw =

∑m

k=1(vk)
1/2Zk. Consequently, with p = Φ(−Zw) as

given above, we have PH(p ≤ α) = α. This proves that the
weighted test protects the type I error rate.

Point estimates and confidence intervals are discussed by
Brannath et al. (2002) and Lawrence and Hung (2003). Wang
et al. (2001) describe procedures for showing noninferiority or
superiority.

Flexible designs may be combined with the possibility of
stopping the experiment at an interim analysis (Bauer and
Köhne, 1994; Cui, Hung, and Wang, 1999; Brannath et al.,
2002). This includes the possibility of accepting the null hy-
pothesis (stopping for futility) or declaring statistical signifi-
cance. As this is done in essentially the same way as for group
sequential designs we will not focus on this possibility here.

Müller and Schäfer (2001) elaborate on the idea of turning a
group sequential design into a flexible design.

Several authors have restricted the flexibility of flexible de-
signs. Early on, Bauer and Köhne (1994) required some pre-
specifications of how to update the sample size in the study
plan. Some examples of prespecified flexible designs will be
discussed in Section 4.1.

2.3 Flexible Designs versus Group Sequential Designs
The main argument for using flexible designs is the flexibility
they provide. Group sequential designs offer only a limited de-
gree of adaptation to the unblinded results of early stage data
and no adaptation to external factors. The criticism raised
against flexible designs has been relatively mild and rare and
mainly focused on SSM. Jennison and Turnbull (2003) and
Tsiatis and Mehta (2003) criticized the weighted analysis, ar-
guing that it is inefficient, and advocated instead using group
sequential designs. Although this criticism is important (and
will be further treated in Section 3.1) we do not regard it as a
fully convincing reason for not using SSM. There are certainly
situations, taking into account the cost of a trial and possible
external information, etc., in which a flexible design may be
preferable. The most fundamental question is, however, not
whether flexible designs are efficient but rather what inference
following a flexible design is valid. This will be discussed in
Section 3.2.

3. Sample Size Modifications
Many authors have searched for optimal implementations of
SSM. To update the sample size, one alternative is to use
the effect size assumed at the start of the trial as a basis for
the sample size determination of the coming parts (Denne,
2001). Another way is to use the effect size estimated during
the trial (Proschan and Hunsberger, 1995). A decision ana-
lytic approach to choosing the sample sizes for the different
stages is suggested by Thach and Fisher (2002). Proschan,
Liu, and Hunsberger (2003) base an SSM on a Bayesian prior
for the effect, which is later updated with interim data. It
should be noted that Bayesian ideas are only utilized for in-
ternal decision making; the results communicated externally
are analyzed in a frequentist way.

3.1 Criticisms Raised against SSM
Tsiatis and Mehta (2003) show that there is always a group
sequential design that is in a certain sense more efficient than
a proposed prespecified flexible design with SSM. One draw-
back of the proposed group sequential design is that an in-
terim analysis is required at every occasion when the flexible
design might have a decision point. This makes the logistics
of the trial difficult.

Example 1. Consider a two-stage flexible design including
one single interim analysis performed after N1 = 100 obser-
vations. Assume that the sample size N2 for the second stage
is a deterministic function of the interim results. The opti-
mal group sequential design, according to Tsiatis and Mehta’s
definition, has an interim analysis at N1 and at every possi-
ble value of N1 + N2. For example, if the sample space for
N2 is {1, 2, . . . , 200}, the optimal design would then have 200
planned interim analyses (if no early stopping occurs) and a
final analysis after 300 observations.
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The problem with many interim analyses is obvious, and
Tsiatis and Mehta state that less frequent monitoring in the
group sequential design, say five to ten times, will typically
give a design with similar properties as the optimal one. A
decision analytic optimality criterion is useful as it takes the
costs of interim analyses into account. With this perspective,
even a group sequential design with five interim analyses may
be inferior to a flexible design.

Jennison and Turnbull (2003) also proposed group sequen-
tial designs as an alternative to flexible designs. The sample
size is often based on a power calculation given a plausible
effect value, δ. A flexible design will typically increase the
sample size if the interim estimated effect is somewhat lower
than anticipated. This indicates that the experimenter is in-
terested in demonstrating a positive effect even if the true
effect is lower than δ. A group sequential design with very
high power given an effect of δ would, according to Jennison
and Turnbull, be a better alternative than flexible designs.
Such a group sequential design could have a good chance of
early stopping if the effect is δ while the power could also be
reasonable for smaller effect values, although at the cost of a
relatively large sample size. Thus, a group sequential design
could achieve the same objectives as a prespecified flexible
design.

Flexible designs are more flexible than the alternatives,
however. Group sequential designs may stop early in response
to interim data but will not react to information from outside
the trial. Results of other trials may, for example, be useful in
assessing the plausible effect and the conditional power, that
is, the power given the observations from the already carried
out stages in the ongoing trial. Issues regarding funding and
the anticipated consequences of different possible trial results
may also change over time. The scientific question that the
study has set out to answer may gain in importance during
the study, and this could call for higher sample sizes resulting
in better precision and higher power.

Liu, Proschan, and Pledger (2002, Example 10), while pro-
moting SSM, criticize SSM rules that are not prespecified,
pointing at potential measurability problems. Technically, in
Liu et al.’s formulation, N2 has to be a measurable function
of p1. They argue that a fully flexible rule, where the ex-
perimenter is free to choose any sample size after seeing the
first stage data, is not necessarily measurable. Rules that are
not specified in advance may also lead to other difficulties, as
mentioned later in Section 4.

3.2 Inference Principles
The key points about the validity of the weighted inference
can be made under the simplifying assumption that obser-
vations X1, X2, · · · are independent and normally distributed
with mean μ and known variance equal to 1. It is usually
straightforward to generalize the results to other situations
such as, for example, unknown variance, other distributions,
and/or two-sample comparisons.

It is convenient to use the formulation suggested by Fisher
(1998) of flexible designs in terms of individual observations
with individual weights. Before observing Xk , the correspond-
ing weight, wk ≥ 0, is specified. In general a weight wk is ran-
dom and can depend on all previous observations, Xk−1 =
{X1, . . . ,Xk−1}, all previous weights, wk−1 = {w1, . . . ,wk−1},

and external factors that we will model by including a nui-
sance parameter, λ. Thus, wk = wk (Xk−1, wk−1; λ). We re-
quire that there exists, with a probability of 1, an integer
N = N(w1, w2, · · ·), interpreted as the total sample size,

such that
∑N

k=1 wk = 1 and wN > 0. The test statistic Zw =∑N

k=1(wk)
1
2 Xk then follows a standard normal distribution

under the null hypothesis μ = 0. Let the probability (den-
sity) function for the kth weight given the previous weights
and observations be f(wk |wk−1, Xk−1), with f(w1 |w0, X0)
interpreted as the unconditional probability function for w1.
With ϕ denoting the standard normal density, the likelihood
for the data generated by the experiment is

N∏
k=1

f(wk | wk−1,Xk−1)ϕ(Xk − μ)

= (2π)−N/2 exp

(
−Nμ2

/
2 + μ

N∑
k=1

Xk −
N∑
k=1

X2
k

/
2

)

·
N∏
k=1

f(wk | wk−1,Xk−1).

If the weights are completely determined by previous
weights and observations, then f(wk |wk−1, Xk−1) = 1 for all
k. In general, wk is random given wk−1 and Xk−1 and its con-
ditional distribution depends on λ but not on μ. The likeli-
hood can therefore be divided into one part exp(−Nμ2/2 +

μ
∑N

k=1 Xk) that depends on the parameter of interest, μ,

and the statistic S = {N,
∑N

k=1 Xk}, and a remaining part
that does not depend on μ but possibly on the observed vari-
ables and weights and the nuisance parameter, λ. The statistic
S is therefore minimal sufficient or, in the presence of λ, S-
sufficient (Barndorff-Nielsen, 1978). In many statistical mod-
els with random sample size, the sample size is independent of
the parameter and therefore ancillary. In our situation, how-
ever, the total sample size, N, is generally dependent on μ.

We will now focus on the inference procedure in the type
of flexible trial described in Section 2. According to the suf-
ficiency principle (Cox and Hinkley, 1974; Barndorff-Nielsen,
1978), the inference should be based on the minimal suffi-
cient statistic alone. Because the weighted test statistic Zw

weights different Xk ’s differently, the weighted test is not con-
sistent with the sufficiency principle. This was brought up by
Jennison and Turnbull (2003) and Posch et al. (2003). Thach
and Fisher (2002, p. 436) highlighted the problem of very dif-
ferent weights. The invariance and conditionality principles
(Cox and Hinkley, 1974) are also violated, as the weighted
test depends on the order of exchangeable observations.

The violation of these principles is problematic, at least
in a strictly theoretical sense. However, one might raise the
question of their practical importance. Are there any conse-
quences? The following example clearly illustrates that the
weighted test may lead to questionable conclusions.

Example 2. Assume that the interest lies in testing μ ≤
0 versus the alternative, μ > 0. With 1000 experimental
units, at a level of α = 5%, and thus a critical limit Cα =
Φ−1(1 − α) = 1.645 for Z, this sample size gives a power of
81% if μ = 0.08 and σ = 1. After N1 = 100 observations, it
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is decided to take an interim look at the data. Disappoint-
ingly,

∑N1
k=1 Xk = −3, that is, the observed average effect is

slightly negative, −0.03. The total weight for stage 1, v1, is
0.1, because the sample size was originally planned to be 1000.
Assuming that only one more stage will be carried out, the
second stage will therefore have the weight v2 = 1 − v1 =
0.9. If the experiment is continued according to plan with
900 observations in the second stage, the conditional power,
given the observations from stage 1, is now only 71% under
the assumption that the true mean μ is 0.08, as compared
to the original 81%. Several authors (e.g., Proschan et al.,
2003) have suggested that the sample size modification could
be based on a combination of the originally anticipated ef-
fect and the observed average. The conditional power is only
37% assuming that μ = 0.05. It might be that the experi-
menter does not find it worthwhile to continue the experi-
ment as planned with 900 observations. Consider instead the
alternative of taking only one single observation in stage 2.
For μ = 0, 0.05, and 0.08, for example, the conditional power
will then be 3.3%, 3.7%, and 4.0%, respectively. If the experi-
menter is keen on finding a significant result, this chance may
be worth taking. If the observed value of X101 happens to
be 2.5, then Zw = (v1)

1
2 Z1 + (v2)

1
2 Z2 = 0.1

1
2 · (−0.3) + 0.9

1
2 ·

2.5 ≈ 2.28. Thus, the hypothesis test is clearly significant and
it is concluded that μ > 0. However, the average of the ob-
servations is (

∑101
k=1 Xk)/101 ≈ −0.005. We have the counter-

intuitive situation of concluding that μ is positive although
the average of the observations is negative. This is due to the
different weighting of the observations taken in the study and
illustrates the danger of violating the inference principles.

4. Alternative Testing Procedures
Having concluded that the previously proposed weighted anal-
ysis of a trial involving SSM is questionable, we will investi-
gate whether there is a reasonable frequentist analysis of such
a trial.

There are some attempts in the literature to avoid the
problems of unequal weighting. Several papers have restricted
the way in which the sample size is changed by giving lower
and/or upper bounds for the sample size. Often, only increases
of the sample size are allowed; see Proschan et al. (2003). As
seen by reversing the stages in the example of Section 3.3,
this rule is not fully convincing. Furthermore, the restricted
SSM using the weighted analysis still violates the sufficiency
principle. However, restricted rules that limit the difference
between weights will prevent the most extreme consequences
of unrestricted SSM.

4.1 Tests Based on Unweighted Observations
Because unequal weighting of observations is a problem, a
natural attempt could be to base the test on Z = (

∑N

k=1 Xk)/

N
1
2 . There may be considerable inflation of the type I error

rate if a naive test is applied (Proschan and Hunsberger, 1995;
Shun et al., 2001), rejecting the null hypothesis at a nominal
level α if Z > Φ(1 − α). However, provided that the SSM rule
is known, the critical level may be adjusted so that the correct
type I error rate is achieved. The resulting unweighted test is
intuitively reasonable but not necessarily optimal. In order to
investigate other alternatives we will further explore what can
be said about sufficiency and ancillarity in this model.

One version of the minimal sufficient statistic is {N, Z }.
The next step of the analysis could be to search for an an-
cillary statistic that is a function of the minimal sufficient
statistic. There is no such ancillary statistic here. Note that,
in an SSM design, the sample size, N, depends on the observa-
tions and thus on the unknown parameter of interest, μ. Even
though it is clear that N is not ancillary, one might guess that
it is nearly ancillary and that conditioning with respect to N
would give a reasonable analysis. However, as we will see, N is
highly informative in some situations and then conditioning
is not sound.

Example 3. Consider a two-stage design with Bernoulli
distributed responses. Assume that the SSM rule N2 =
N2(

∑N1
k=1 Xk) is deterministic and one-to-one. This means

that the different outcomes of the first stage correspond to
different values of the total sample size, N. Conditioning on N
therefore implies conditioning on the results of the first stage.
Consequently, the conditional analysis would completely ig-
nore the data from the first stage, regardless of the choice of
weights v1 and v2.

The assumption of Bernoulli distributed observations
makes the point in Example 3 most obvious. However,
similar examples may also be constructed for continuous
distributions.

As there is no obvious other conditioning, a reasonable
analysis is a likelihood ratio (LR) test. Such inference requires
that the way in which N depends on the observations is known.
A completely flexible SSM rule, without any prespecification,
will not satisfy this.

Here we will consider the LR test for a two-stage design as
an example. Denote by Yk the sum of the Nk observations in
stage k. Assume a deterministic SSM rule, with N1 = n1, and
An = {Y1 : N(Y1) = n}. Let ϕ(·) denote the standard normal
probability density. The likelihood of parameter μ for fixed
N = n and

∑N

k=1 Xk = s is

L(μ, n, s) =
d

ds
P (Y1 ∈ An, Y1 + Y2 ≤ s)

=

∫
y∈An

ϕ

(
y − n1μ√

n1

)
ϕ

(
(s− y) − (n− n1)μ√

n− n1

)
dy

= ϕ

(
s− nμ√

n

)∫
y∈An

ϕ

(
y − sn1/n√
n1(n− n1)/n

)
dy.

Note that the last integral is independent of the parameter μ.
Given the null hypothesis μ = 0 and alternative μ = μ′, the
LR test statistic is therefore

LRμ′(n, s) =
L(μ′, n, s)

L(0, n, s)
=

ϕ((s− nμ′)/
√
n)

ϕ(s/
√
n)

.

Thus, using the transformation to the Z-value, z = s/n
1
2 ,

we have LRμ′(n, s) = exp(zμ′n
1
2 − μ′2n/2), independent of the

SSM rule. A one-sided LR test rejects the null hypothesis
if and only if LRμ′(n, s) > c, where c is chosen to achieve a
certain type I error. Although the likelihood ratio does not
depend on the SSM rule, it is clear that the test does, as the
critical value depends on the distribution of the sample size.
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Example 4. Assume that N1 = 100 and that the total sam-
ple size is 200 or 300 depending on whether Z1 > 2.0 or ≤ 2.0.
We optimize the LR test for the alternative μ′ = 0.2. Note
that the rejection region depends on the value of μ′. From
numerical calculations, the rejection region for the LR test,
using a significance level of 2.5%, is {N = 200, Z > 1.81} ∪
{N = 300, Z > 2.05}. The uncorrected naive test, with re-
jection region Z > 1.96, would have an inflated level of α =
2.75%. A test based only on Z, ignoring N, which has a cor-
rect level α = 2.5%, rejects the null hypothesis if Z > 2.00.
The LR test gives slightly higher power, 91.7%, compared to
91.4% for this test.

4.2 The Dual Test
A major advantage of flexible designs is that there is no
requirement for prespecification of how and under which con-
ditions the design is to be changed. In particular, the exper-
imenter can base design modifications on external informa-
tion. If the flexibility of flexible design is to be preserved, it is
therefore typically impossible to characterize the distribution
of N. In this case, we cannot construct a test with a correct
type I error rate that is based solely on the minimal sufficient
statistic.

One idea is to combine the weighted test of Section 2 with
a test based on Z (Denne, 2001; Posch et al., 2003; Chen,
DeMets, and Lan, 2004). Recall that the weighted statistic

is Zw =
∑N

k=1(wk)
1
2 Xk and the unweighted statistic is Z =∑N

k=1 ( 1
N

)
1
2 Xk. The dual test rejects the null hypothesis at

one-sided level α if and only if min(Zw, Z) > Φ(1 − α), that
is, both the weighted and the naive tests reject at level α.
Because the weighted test controls the type I error, the dual
test has at most size α.

5. Conclusions
This article is mainly concerned with frequentist inference fol-
lowing a design that uses sample size modifications based on
interim effect estimates. It is clear that there is no problem in
the Bayesian paradigm. The prior is updated with the infor-
mation given by the variables actually observed, and the way
in which the sample size was determined is irrelevant. Also
from a Bayesian point of view, unequal weighting of equally
informative observations is not acceptable.

We have identified four possible hypothesis tests from the
literature (the naive, the unweighted, the weighted, and the
dual), added the LR test as the fifth, and also considered a
conditional test. The weighted test (Bauer and Köhne, 1994)
is historically closely connected to the ideas of flexible designs
and SSM. With this test, great design flexibility is allowed
while the type I error is controlled. However, the weighted test
violates inference principles, as it weights equally informative
observations unequally, and may lead to unreasonable results.
Section 3.2 gave an example in which statistically significant
evidence for a positive mean was declared while the average
of the observations was in fact negative.

There are alternative tests based on the unweighted statis-
tic, Z. The naive test, ignoring that SSM was used, typically
results in an inflated type I error level. This inflation can be
large. If the SSM rule is known, then the naive test is inferior
to the unweighted test where the critical value c is chosen such

that the rejection region {Z > c} has the correct type I error.
The unweighted test seems to be a viable and rather simple
option. The critical value is easily calculated numerically for a
two-stage design and can also be simulated without difficulty
for any SSM design.

For a fixed alternative, the LR test is, by Neyman–
Pearson’s lemma, the most powerful of all possible tests. As
the minimal sufficient statistic is {N, Z}, the critical value of Z
depends on the observed total sample size, N. It is worth not-
ing that the likelihood ratio does not depend on the SSM rule.
Still, the rejection region of the LR test depends on the null
distribution generated by this rule. One objection to the LR
test for the SSM situation is related to well-known issues of
ancillarity and mixture of experiments (e.g., Lehmann, 1986,
Chapter 10.1). It is usually accepted that, if one of several
possible experiments was chosen solely on the basis of an inde-
pendent random mechanism, such as coin flipping (in our case
choosing the sample size), then the analysis should be made
conditional on the experiment chosen. Consider an SSM rule
where N1 = 1 and where N varies greatly depending on X1.
The situation is then similar to the coin flipping example. In
both cases, the LR test has the highest power, but we regard
a conditional test as being more sensible. The conditional test
is not always attractive, however, as demonstrated by an ex-
ample in Section 4.1. The reason is that the total sample size
is sometimes highly informative.

The unweighted, LR and conditional tests all require a
known SSM rule and thus restrict the design flexibility con-
siderably. An interesting alternative analysis is the dual test
proposed by Denne (2001) and further studied, for example,
in Posch et al. (2003) and Chen et al. (2004). This test re-
quires both the weighted test and the naive test to be sig-
nificant. The dual test clearly protects the type I error as
the weighted test has correct size. One might think that the
dual test would be severely conservative. Depending on how
the sample sizes are chosen, however, the dual test may be
as powerful as the weighted test for a fixed significance level.
For a two-stage design, it is clear at the interim analysis for
which values of N2 the conditional power will be the same
as that of the weighted test. If such a sample size is always
chosen, there is no loss of power. The critical observation is
that, given Z1 and for each potential value of N2, it is easy
to calculate which one of the critical levels of the weighted
test and the naive test will be largest. In the former case,
the naive test is automatically significant when the weighted
test is.

It is clear that the dual test does not obey the sufficiency
principle. The problem with this seems connected with power
rather than with the strength of evidence in the case of a
significant result. It is often instructive to view a statistical
procedure from different angles. The weighted test shows a
very strange behavior from a perspective of likelihood-based
inference or Bayesianism. However, a significant result in the
dual test implies that the value of Z is large. For example, a
Bayesian analysis with uninformative prior would then agree
that there is good evidence for a positive effect. On the other
hand, it may happen that Z is large also when the dual test
fails to reject the null hypothesis. This is reflected in the sub-
optimal power of the dual test. Only some SSMs can be done
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without losing power compared to the weighted test. Further-
more, the weighted test is less powerful than the LR test.

Much more work is needed to explore flexible designs and
the inference following such designs. First we would like to see
continued discussion on the validity of the tests. The dual test
deserves further attention as it preserves Bauer and Köhne’s
original flexibility, with no need to prespecify the SSM rule.
Second, the efficiency of the tests should be compared. Third,
given better answers to how the analysis should be done, the
relative merits of flexible designs, as compared, for exam-
ple, with group sequential methods, are open to additional
study.
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The authors raise important concerns about adaptive and
flexible designs. They note that equally informative obser-
vations can be weighted unequally in these designs and such
weighting is contrary to principles of statistical inference; their
examples illustrate what many would agree to be inappropri-
ate inferences. Traditional group sequential tests also offer
a methodology for reaching a data-dependent choice of final
sample size and the efficiency of new adaptive methods should
be assessed against this alternative approach.

The emphasis in the article is on the “validity” of infer-
ence on conclusion of a study, but this is not a simple concept
to define. It is clearly important that trial results should be
credible to the intended audience and credibility may suf-
fer if basic principles of inference are not followed. The same
principles of inference are fundamental to issues of efficiency
and admissibility; pursuing these questions further shows that
efficiency depends crucially on other aspects of adaptive de-
signs, in particular the rule for modifying sample size. We
have found many published proposals for adaptive designs to
be inefficient from this perspective but their proponents are
usually keen to defend them. If a rule for modifying sample
size were identified as inefficient, would the authors agree to
label a design using this rule as “invalid”?

The authors mention other types of adaptive redesign be-
sides modification of sample size, for example, dropping treat-
ment arms for certain doses or modifying the null hypothesis
being tested. These and other forms of adaptation have re-
cently been surveyed by a PhRMA working group and conclu-
sions are presented in Gallo et al. (2006). Our own discussion
accompanying that paper complements our comments here,
which focus particularly on efficiency.

1. Preplanned Adaptive Designs
We begin our discussion in the context of designs that allow
adaptive sample size modification but do so in a preplanned,
rather than flexible, manner. As in the article, we consider the
case where there is no need to adjust sample size in response
to updated estimates of a variance or other nuisance param-
eter. The authors note in Section 2.2 that “flexible designs
may be combined . . .with stopping the experiment at an in-

terim analysis” but they do not pursue this option. We shall
consider the broader class of designs that permit early stop-
ping. We start with an example to illustrate how a seemingly
intuitive and appealing adaptive design can be quite ineffi-
cient when compared with a suitably chosen group sequential
test.

1.1 Example: A Variance Spending Design
Suppose θ represents a treatment effect and we wish to test
H0 : θ ≤ 0 against the alternative θ > 0. The score statistic
for data yielding information I for θ has distribution S ∼
N(θI, I) and a fixed sample test of H0 with power 1 − β at
θ = δ > 0 requires information

If = (zα + zβ)2/δ2,

where zp denotes the 1 − p quantile of the standard normal
distribution. In many applications, “information” is directly
related to sample size but in other cases the relation is less
direct, for example, in a comparison of survival distributions
information depends primarily on the number of observed fail-
ures. In Shen and Fisher’s (1999) “variance spending” designs,
data are collected in groups with successive groups provid-
ing information r1If , r2If , . . . , for a prespecified sequence r1,
r2, . . . . The score statistic from group j is

Sj ∼ N(θrjIf , rjIf ).

Weights wj , j = 1, 2, . . . , are defined adaptively with wj al-
lowed to depend on S1, . . . ,Sj−1 and w1, . . . ,wj−1. The design
requires that a stage m is reached where

m∑
j=1

w2
j = 1. (1)

An overall test statistic is built up from contributions
wjSj/(rjIf )

1
2 ∼ N(θwj(rjIf )

1
2 , w2

j). Then, under θ = 0, it can
be shown that

Tm =

m∑
j=1

wjSj√
(rjIf )

∼ N(0, 1).
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With
∑

j
rj = 1 and wj = (rj)

1
2 , this formula yields the

fixed sample size test. However, the idea of the adaptive de-
sign is to allocate lower weights to future groups when the
current estimate of θ is low, thereby extending the study and
increasing power. Shen and Fisher (1999) propose a method
for assigning weights adaptively. At the end of stage j − 1, a
target for further information I∗

j is calculated and the aim, at
this point, is to gather groups of data until information I∗

j is

reached, setting future group weights wj proportional to (rj)
1
2

while satisfying (1). If rjIf > I∗
j , the next group will exceed

this information target and the study can then be brought to
a close with wj = (1 −

∑j−1
i=1 w

2
i)

1/2. If rjIf < I∗
j , more than

one additional group is required and the weight for group j is
set as

wj =

{
rjIf

I∗
j

(
1 −

j−1∑
i=1

w2
i

)}1/2

.

If the overall target information level remained fixed, the fu-
ture weights wj would be proportional to the square root of
the information provided by each group, but in reality the
target will vary after each new group of observations.

Denote the maximum likelihood estimate of θ after stage
j − 1 by

θ̂j−1 =

j−1∑
i=1

Si

j−1∑
i=1

riIf

.

In the design we have studied, I∗
j is chosen so that if just one

additional group of observations were taken, yielding a score
statistic Sj ∼ N(θI∗

j , I∗
j ) weighted by wj = (1 −

∑j−1
i=1 w

2
i)

1/2,

the conditional power under θ = θ̂j−1 would be at least 1 −
β. This gives the condition, for positive values of θ̂j−1,

Tj−1 − zα(
1 −

j−1∑
i=1

w2
i

)1/2 + θ̂j−1
√I∗

j ≥ zβ ,

where Tj−1 =
∑j−1

i=1 wiSi/(riIf )
1
2 . If Tj−1 − zα ≥ (1 −∑j−1

i=1 w
2
i)

1/2zβ , then I∗
j = 0 would suffice, but it is still

necessary to take one more group of observations for the
variance spending design to terminate. In other cases with
positive θ̂j−1 we set

I∗
j =

⎧⎪⎨⎪⎩
Tj−1 − zα(

1 −
j−1∑
i=1

w2
i

)1/2 − zβ

⎫⎪⎬⎪⎭
2

1

θ̂2
j−1

, (2)

truncating this when necessary to restrict the total informa-
tion to an upper bound Imax. When θ̂j−1 is negative but early
termination for “futility” has not occurred, the same upper
bound on total information is used to define I∗

j directly.
We have simulated this design with α = 0.025 and 1 −

β = 0.9. Following Shen and Fisher’s (1999) recommenda-
tions, we used r1 = 1/2 and r2 = r3 = · · ·= 1/6 up to a
maximum of 10 groups, so the test is terminated with w10 =
(1 −

∑9
1 w

2
i)

1/2 if it continues as far as the tenth stage and
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Figure 1. Power of the fixed sample test, variance spending
design, and a 5- or 10-group ρ-family test (ρ = 1) with power
0.9 at θ = 0.8 δ.

total information 2If . The value 2If is also used for Imax

in the truncation described above. The design includes early
termination for futility by stopping to accept H0 at stage j
if θ̂j < δ̃ − (

∑j

i=1 riIf )−1/2z0.99 with δ̃ set as 0.8 δ, the value
below which power starts to decline rapidly. This rule is of
the form proposed at the end of Section 2 of Shen and Fisher
(1999), but using δ̃ = 0.8 δ rather than δ̃ = δ to avoid too
much loss of power for θ values just below δ.

Figure 1 compares the power curve of this variance spend-
ing test with that of the underlying fixed sample design. Re-
sults are based on one million simulations and estimation error
is negligible. The figure shows adaptation has been effective
in increasing power above that of the fixed sample size test.
Because the adaptive redesign is completely prespecified, it is
perfectly possible to evaluate the design and compare it with
other group sequential schemes before starting a study. One
versatile class of group sequential tests is the ρ-family of er-
ror spending tests described by Jennison and Turnbull (2000,
Section 7.3). A suitable choice here is the design with param-
eter ρ = 1 and group sizes set to attain power 0.9 at 0.8 δ,
which requires maximum information 1.95If and 2.02If for
tests with 5 and 10 groups, respectively. The power curves for
the ρ-family tests with 5 and 10 groups are indistinguishable
and Figure 1 shows these are superior to the power curve of
the variance spending test at the higher values of θ where
power is most important. Figure 2 shows expected informa-
tion on termination for the two group sequential tests and the
variance spending test, expressed in units of If . The curves
for the group sequential ρ-family tests are lower by around
15–20% over the full range of θ values, indicating lower aver-
age sample size and a shorter expected time for the study to
reach a conclusion. The group sequential test’s superior power
curve and significantly lower expected information curve show
serious inefficiency in the variance spending design.

We have made similar comparisons to assess the efficiency
of a variety of adaptive designs proposed in the literature and,
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Figure 2. Expected information on termination of the vari-
ance spending design and 5- and 10-group ρ-family tests (ρ =
1) with power 0.9 at θ = 0.8 δ, expressed in units of If .

in all cases, found the ρ-family to provide efficient nonadap-
tive alternatives. In examples where adaptation is used to
increase power more substantially, the degree of inefficiency
can be much greater. For further examples, see Jennison and
Turnbull (2003) and (2006a). It is, thus, appropriate to ex-
plore the theoretical foundations of efficiency and inefficiency
in order to understand the principles behind sound trial
design.

1.2 Theory
1.2.1 Sufficient statistics. We summarize here results de-

rived in Jennison and Turnbull (2006a) for adaptive group
sequential designs testing H0 : θ ≤ 0 against θ > 0. In these
designs, group sizes are chosen adaptively from a finite, but
large, set of options, a maximum of K analyses is allowed,
and early stopping is permitted at each analysis to accept
or reject H0. Designs are compared in terms of their power
curves and expected information on termination at a set of θ
values. A design is said to be inadmissible if another design
has a lower expected information function and higher power
curve (strictly speaking, the dominating design can be equal
in some respects but there must be at least one instance of
strict superiority). A design that is not inadmissible is said to
be admissible.

The fundamental theoretical result is a “complete class the-
orem,” which states that all admissible designs are solutions
of Bayes sequential decision problems. Because Bayes designs
are functions of sufficient statistics, any adaptive design de-
fined through nonsufficient statistics is inadmissible and is
dominated by a design based on sufficient statistics. This
conclusion confirms that violation of the sufficiency princi-
ple has a negative impact on the efficiency of an adaptive
design. Schmegner and Baron (2004) obtain similar conclu-
sions on the inadmissibility of rules based on nonsufficient
statistics in the special case where sampling and decision

costs are combined in a single Bayes risk under a stated prior
for θ.

In our example of a Shen and Fisher (1999) variance spend-
ing test, the weights wj create a statistic Tm that is not suffi-
cient for θ and, hence, this test can be outperformed by a test
with the same sequence of information levels and a stopping
rule based on sufficient statistics. Because the group sizes (and
therefore information levels) of the variance spending test are
predetermined, this dominating design is simply a nonadap-
tive group sequential test.

In many other adaptive designs, group sizes are chosen
adaptively and a test dominating an adaptive design based
on nonsufficient statistics may also have adaptively chosen
group sizes. This raises the question as to when an adaptive
design using nonsufficient statistics can be improved on by a
nonadaptive group sequential design. It follows from our theo-
retical results that this is always possible, but with the same
proviso required by Tsiatis and Mehta (2003), namely, the
group sequential test has to be allowed an analysis at every
cumulative information level that might arise in the adaptive
design. Allowing so many analyses gives the group sequen-
tial test an unfair advantage and, as Burman and Sonesson
note in Section 3.1, a trial design with a great many interim
analyses could well be impractical.

The advantage held by adaptive designs in this discussion
is that response-dependent choice of group sizes can itself
be a source of improved efficiency, an idea first proposed by
Schmitz (1993). We have explored the possible benefits of this
feature by comparing optimal adaptive designs and optimal
nonadaptive designs for specific criteria. Here, the optimal
adaptive designs minimize expected information on termina-
tion averaged over a set of effect sizes; they are optimal among
all possible stopping boundaries and sample size rules, a sub-
stantial advance on the “optimal implementations” Burman
and Sonesson refer to at the beginning of Section 3. The ben-
efits gained by adaptive choice of group sizes (or equivalently
information levels) are quantified by Jennison (2003) and
Jennison and Turnbull (2006a,b) and these results show that,
when the maximum number of analyses is held fixed, adap-
tive choice of group sizes leads to only slight efficiency gains.
These gains are of the order of 1% of If , and it is unlikely
they would justify the administrative complexity of an adap-
tive design. Combining the complete class theorem with these
numerical results, we arrive at the following conclusions: any
adaptive design based on nonsufficient statistics can be im-
proved by an adaptive design using sufficient statistics; the
performance of this improved design can be matched very
closely by a group sequential test with the same number of
analyses; if the adaptive design is inefficient in any respect, it
is quite possible that a well-chosen group sequential test can
outperform it completely.

1.2.2 Sample size rule. Although the origins of our discus-
sion of efficiency lie in a concern over breaches of the suffi-
ciency principle, it is another aspect of certain adaptive de-
signs, namely, the rule for sample size modification (SSM),
that we believe to be the major source of inefficiency. Our
calculations of optimal adaptive designs show that optimized
sample size rules are quite different from those proposed by
many authors for their adaptive designs. When a design is
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based on attaining fixed conditional power, either at a given
effect size or under the current estimate of effect size, fu-
ture sample size increases monotonically as the current test
statistic decreases; in contrast, optimal adaptive designs have
the largest future group sizes when the test statistic is in the
center of the continuation region and group sizes are smallest
near either stopping boundary.

In our example of a Shen and Fisher (1999) design, the cur-
rent estimate of effect size was substituted into a sample size
formula with no allowance for the high variance of such an in-
terim estimate (remember that the fixed sample size test with
information If is only just capable of distinguishing between
θ = 0 and θ = δ). Interim estimates of θ are used in a similar
way in many proposed designs and their inherent variability
leads to random variations in sample size that are themselves
inefficient (see Jennison and Turnbull, 2003, Section 4.3, for
further discussion of this point).

1.2.3 Burman and Sonesson’s likelihood ratio rule. In Sec-
tion 4.1, the authors propose a likelihood ratio (LR) test for
data collected in a two-stage design. In their Example 4, an
initial sample of 100 observations is taken in the first stage
followed by a second group of 100 or 200 observations, de-
pending on the first-stage data. Early stopping at the first
stage is not permitted. It is easy to see that the final deci-
sion of the LR test is the Bayes rule for some prior and loss
function with weights at effect sizes 0 and μ′. Thus, the LR
procedure is admissible among designs with the same SSM
rule. However, the SSM rule itself is arbitrary; moreover, the
design does not take advantage of the opportunity to stop to
accept or reject H0 at the first stage. If we consider the LR
procedure in the class of all possible two-stage designs with
the option to stop at stage 1, it is not a Bayes design (be-
cause then it would stop at the first stage for some outcomes)
and so it is inadmissible. Indeed, we have found nonadaptive
group sequential tests with two groups of 150 observations
that match the power curve of the authors’ LR test and have
expected sample size lower by 10–30% for effect sizes in the
range 0–0.3.

The authors state in Section 2.3 that, to them, the “fun-
damental question is . . . not whether flexible designs are effi-
cient but rather what inference following a flexible design is
valid.” We are concerned that this view can lead to the conclu-
sion that the LR version of the study design in Example 4 is
regarded as “acceptable” when other designs of comparable
complexity can provide the same power curve for consider-
ably smaller average sample sizes. We believe efficiency issues
should be central to this discussion.

2. Adaptive Designs Used Flexibly
Much of the motivation for adaptive designs is the possibility
of flexible usage, extending beyond the prespecified designs
we have discussed thus far. The authors note in Section 3.1
that investigators may wish to respond to information from
outside a trial, for example, results reported from other tri-
als. The importance of the scientific question being addressed
can change over time and the availability of new funding may
increase the resources to pursue this question. Adapting a
design in response to unanticipated external factors requires

flexible methods. For many types of flexible redesign, the
requirement to maintain the stated type I error probability
makes it inevitable that the final decision will be based on a
nonsufficient statistic. Thus, the combination of flexibility and
strict control of the type I error rate means it is not possible
to insist on some of the usual features of inference rules.

The authors appear to acknowledge this paradox in their
conclusion that “unrestricted use of the weighted analysis is
not sound” as this leaves open the option of using a weighted
analysis when there is no other alternative. Combining this
with an unweighted analysis in the “dual test” may provide
reassurance when both tests agree. One should still worry
though about the arguments that will arise in the (possibly
rare) situations where the two tests lead to different conclu-
sions.

The paper ends by encouraging “continued discussion on
the validity of the tests.” Various desiderata for tests have
been aired in the paper and we would welcome a simple state-
ment of what the authors see as the key criteria for a test to
be “valid.” As noted earlier, we would wish to see efficiency
included with these criteria.

It is a pleasure to thank the authors for a stimulating
paper.
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I am thankful for the opportunity to respond to this im-
portant critical look at adaptive methods for clinical trials.
Burman and Sonesson (2006) raise legitimate concerns while
accurately characterizing the tradeoff between flexibility and
optimality. Understanding this tradeoff is essential when de-
ciding which adaptive methods, if any, should be used in a
given trial. A similar tradeoff applies to the comparison of
group sequential monitoring to no monitoring: monitoring al-
lows us to stop early, but at the cost of loss of power compared
to not monitoring. Adaptive sample size methods allow more
leeway by permitting us to change the originally planned sam-
ple size after seeing data. Even within the class of adaptive
methods, some are more flexible than others. Some rely on es-
timates of the treatment effect, while others use only nuisance
parameter estimates. Burman and Sonesson focus on the for-
mer, but there are gradations of flexibility even within meth-
ods based on the treatment effect. Some require prespecifica-
tion of a sample size rule dictating exactly how we will change
the sample size for every conceivable first-stage outcome;
others require us to decide the sample size only for the first-
stage outcome actually observed, making the assumption that
had we observed another value, our mind would have acted
in a measurable way. The greater the flexibility we allow, the
more care we must exercise to ensure a sensible test.

The authors offer, as proof of the unsoundness of adaptive
designs, an example in which an adaptive design leads to the
conclusion that μ > 0 even though the average of the obser-
vations is negative. That this could happen with injudicious
choice of adaptive method and/or sample size modification
was pointed out at the bottom of page 1321 of Proschan and
Hunsberger (1995). In fact, it was the prospect of this type of
aberration that prompted Proschan and Hunsberger to con-
sider, in the choice of sample size, whether the critical value
for the usual z-score would differ substantially from that of
a fixed-sample test (see Proschan, 2004 for a geometric per-
spective on this critical value). This informal sample size re-
striction prevents the type of nonsensical test that can result
from extreme deviations from the originally planned sample
size. The examples from Proschan and Hunsberger (1995) and
Burman and Sonesson (2006) highlight the fact that greater
care is needed the greater the flexibility one allows.

Burman and Sonesson’s application of inference principles
to adaptive methods is very useful. They consider the one-
sample case of testing whether a mean exceeds 0 and focus
on the sufficiency principle, though they also mention the in-
variance principle. I would like to expand on these and dis-
cuss another one—the likelihood principle. The authors em-
phasize that most adaptive methods violate the sufficiency
principle because inference is not based solely on the suffi-
cient statistic—the (random) sample size N and the sum of
the N observations. The premise is that a specific rule N(S1)
relating the final sample size to the first-stage sum has been

prespecified and must be followed. If that is the case, then I
agree that one should follow the sufficiency principle. But the
premise eliminates much of the flexibility afforded by adap-
tive methods. In reality, the decision to change the sample
size is a very complex one involving numerous factors, some
of which may be foreseeable and others not. The idea that we
could know how decision makers would react for every possi-
ble outcome is simply unrealistic. All we will ever really know
is the sample size N(sobs) they chose for the observed first-stage
outcome sobs. Suppose we prespecify a rule N = N(S1) and an
α-level rejection region based on the sufficient statistic (N,
SN ). That is, the rejection region is of the form ∪n(N = n,
Sn ∈ Rn) for Borel sets Rn . Now suppose we do not follow the
sample size rule. Will we still have an α-level procedure? In
some situations we cannot even proceed if we do not follow
the prespecified rule. For example, suppose the prespecified
rule calls for a sample size of either 100 or 200, therefore the
rejection region is of the form (N = 100, S100 ∈ A100) ∪ (N =
200, S200 ∈ A200). If we decide to use a sample size of 150 in-
stead, we cannot proceed. More can be said, however. In fact,
there does not exist a sample size rule N = N(S1) and test
based on the sufficient statistic that maintains level α even if
one does not follow the sample size rule (one proof is given
at the end of this discussion, though I think there must be a
shorter one). The only tests that maintain level α even if we
do not follow the prespecified sample size rule are not based
on the sufficient statistic. For example, the test that rejects
the null hypothesis when (Z1 + Z2)/2

1/2 > 1.96, where Z1 =

S1/n
1/2
1 and Z2 = S2/(n − n1)

1/2 are the z-statistics from the
first and second stage, has level α for any (nonzero) first- and
second-stage sample sizes.

I must admit to some confusion about Burman and
Sonesson’s point that adaptive methods violate the invariance
principle because inferences depend on the order of exchange-
able observations. It was unclear to me which set of random
variables they were asserting were exchangeable—the infinite
set of all potential observations or the set of N observations
actually observed, where N is random. The former set is ex-
changeable but the latter is not. To simplify the discussion,
consider a trial with group sequential monitoring and no adap-
tive sample size modification. Assume the trial will have only
two observations unless it is stopped after the first one, and
the observations are independent and identically distributed
(i.i.d.) standard normals under the null hypothesis. If we use
the O’Brien–Fleming boundary, we will reject the null hy-
pothesis after the first observation Z1 if Z1 > 2.796, and after
the second observation if (Z1 + Z2)/2

1/2 > 1.977. If we did
not monitor, but rather always observed Z1 and Z2, then Z1

and Z2 would be i.i.d. and hence exchangeable. With mon-
itoring, if we proceed to the second stage, the observations
are no longer exchangeable; the likelihood of (2.9, 1.0) is 0—
because we would have stopped at stage 1 without seeing

C© 2006, The International Biometric Society
No claim to original U.S. government works.
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z2 = 1.0—whereas the likelihood of (1.0, 2.9) is not. Thus,
we have two ways of viewing things: (a) (Z1, Z2) are not ex-
changeable, in which case there is no violation of the invari-
ance principle, or (b) (Z1, Z2) are exchangeable—because in a
nonmonitoring setting, they are—in which case group sequen-
tial monitoring without sample size modification also violates
the invariance principle.

The fact that Burman and Sonesson speak positively about
the dual test, which they admit also violates the sufficiency
principle, suggests that principles of inference only go so far.
It is not uncommon for accepted statistical methods to violate
at least one seemingly reasonable principle. For example, the
likelihood principle states that our inference should depend
only on the likelihood of the observed data, not on what we
would have done if the outcome had been different. This seems
like a reasonable principle, but following it means eliminating
much of classical statistics, including hypothesis testing. In
a sense, adaptive methods that are invariant to the choice of
sample size function take a step toward appeasing proponents
of the likelihood principle; at least our current decision does
not depend on the sample size we would have chosen had the
first-stage result been different.

I agree with Burman and Sonesson that previous criticisms
of adaptive methods (Jennison and Turnbull, 2003; Tsiatis
and Mehta, 2003) are not convincing. The proposed “improve-
ments” either impose a rigid sample size rule that eliminates
much of the appeal of adaptive methods or assume a maxi-
mum sample size Nbig. That presupposes two things: (1) one is
willing to use a sample size of Nbig if necessary and (2) one is
not willing to use a sample size of Nbig + 1 under any circum-
stances. If one is willing to make these assumptions, then it is
absolutely true that the group sequential design is preferable
to the adaptive design. However, Lehmacher and Wassmer
(1999) and Cui, Hung, and Wang (1999) showed how to im-
prove any group sequential design with a given maximum
sample size Nbig by allowing a sample size increase such that
if the original design is maintained, inference will be identi-
cal to the group sequential design. For example, suppose you
specify a maximum sample size of Nbig = 200, with an interim
look after each group of 50 observations. Now suppose at the
halfway point, you decide you want a little additional power
by adding 30 observations. You are free to do so as long as you
apply the group sequential boundaries to Z1, (Z1 + Z2)/2

1/2,
(Z1 + Z2 + Z3)/3

1/2, and (Z1 + Z2 + Z3 + Z4)/4
1/2, where

Z1, . . . ,Z4 are the z-scores from each of the four stages. If
you decide not to increase the sample size, the boundary is
the same as for the group sequential trial with no option to
increase the sample size. Thus, if you feel that you can spec-
ify a number Nbig such that you might use a sample size of
Nbig but under no circumstances would you use Nbig + 1 or
more, then group sequential methods are superior to adaptive
methods. If you are not in that situation, adaptive methods
are superior because they allow the possibility of a sample
size increase while maintaining the original boundaries if the
sample size is not changed.

Adaptive designs based on the treatment effect are not a
panacea. They should be used only when very little informa-
tion is known about the expected treatment effect and/or the
minimally relevant effect. Burman and Sonesson raise impor-
tant concerns that underscore the need for care when using
very flexible methods. They are correct that such methods,

if extremely abused, produce illogical conclusions, but that is
no more a condemnation of adaptive methods than Jack the
Ripper is a condemnation of cutlery.

Proof that no test based on the sufficient statistic can main-
tain level α irrespective of whether the prespecified sample size
rule is followed.

For a given sample size function N, write the sufficient
statistic as (N , S1 + S2), where S1 and S2 are sums of the
observations in stages 1 and 2, respectively. Any level-α test
based on the sufficient statistic is of the form ∪n(N = n, S1 +
S2 ∈ Rn) with

α =
∑
n

Pr(N = n, S1 + S2 ∈ Rn)

=
∑
n

Pr

(
N = n,

S2√
n− n1

∈ Rn − S1√
n− n1

)
=

∑
n

Pr

(
N = n,Z2 ∈ Rn −√

n1Z1√
n− n1

)
=

∑
n

∫ ∞

−∞
Pr

(
N(Z1) =n,Z2 ∈

Rn −√
n1Z1√

n− n1

∣∣∣∣Z1 = z1

)
φ(z1) dz1

=
∑
n

∫ ∞

−∞
I(N(z1) = n) Pr

(
Z2 ∈ Rn −√

n1z1√
n− n1

)
φ(z1) dz1,

=
∑
n

∫ ∞

−∞
I(N(z1) = n)A(z1, n)φ(z1) dz1, (1)

where Z1 and Z2 are the z-scores for the data of stages 1 and
2, respectively, (Rn − n

1/2
1 z1)/(n − n1)

1/2 denotes the set of

points ([x − n
1/2
1 z1]/[n − n1]

1/2 : x ∈ Rn), and

A(z1, n) = Pr

(
Z2 ∈

Rn −√
n1z1√

n− n1

)
=

∫ ∞

−∞
I

(
z2 ∈

Rn −√
n1z1√

n− n1

)
exp

(
−z2

2

/
2
)

√
2π

dz2. (2)

It is important to keep in mind that in (2), n and z1 are real-
ized values of random variables, and are therefore not random
(that is why we were able to drop the conditioning statement
Z1 = z1 in the steps leading to (1)).

Now suppose we abandon the original sample size rule, but
we continue to use the same rejection sets Rn . For the type I
error rate to remain α irrespective of the sample size rule
actually used, any two such rules N1 and N2 must yield the
same type I error rate. For fixed z∗1, define

N1(z1) =

{
k1 if z1 ∈

[
z∗1 , z

∗
1 + ε

]
m if z1 /∈

[
z∗1 , z

∗
1 + ε

]
N2(z1) =

{
k2 if z1 ∈

[
z∗1 , z

∗
1 + ε

]
m if z1 /∈

[
z∗1 , z

∗
1 + ε

]
.

From (1), the difference in type I error rates for these two
sample size rules is∫ z∗1+ε

z∗1

{A(z1, k1) −A(z1, k2)}φ(z1) dz1.

Because ε is arbitrary, for this integral to be 0, A(z∗1, k1) =
A(z∗1, k2). In other words, A(z∗1, n) does not depend on n.
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Because z∗1 was also arbitrary, A(z1, n) = A(z1) does not
depend on n for any z1.

I next show that A(z1, n) does not depend on z1 either.
Write A(z1, n) as Pr(Z2 ∈ Rn

(n−n1)1/2 − εn(z1)), where εn(z1) =

n
1/2
1 z1/(n − n1)

1/2. Because εn(z1) → 0 as n → ∞, it is
not difficult to show that A(z1, n) − Pr(Z2 ∈ Rn

(n−n1)1/2 ) → 0 as
n → ∞. Thus,

A(z1) = A(z1, n) = lim
n→∞

A(z1, n)

= lim
n→∞

{
Pr

(
Z2 ∈

Rn√
n− n1

)
+A(z1, n) − Pr

(
Z2 ∈

Rn√
n− n1

)}
= lim

n→∞
Pr

(
Z2 ∈

Rn√
n− n1

)
. (3)

In other words, A(z1) does not depend on z1.
Recapping, A(n, z1) depends on neither n1 nor z1; it must

be a constant. Fix n and write A(n, z1) as Pr(X ∈ Rn}, where

X = (n − n1)
1/2Z2 + n

1/2
1 z1 is normally distributed with mean

μ = μ(z1) = n
1/2
1 z1 and fixed variance σ2 = n − n1. As z1

ranges from −∞ to ∞, so does μ. Thus, Rn is a set such that
Pr(N(μ, σ2) ∈ Rn) is the same for all μ ∈ (−∞, ∞). This
clearly implies that Pr(Xn ∈ Rn) is either 0 or 1, and because
the value is the same for each n, the right-hand side of equa-

tion (1) is either 0 or 1 instead of α. As this is a contradiction,
it cannot be that the original rejection region based on the suf-
ficient statistic maintains level α irrespective of whether the
original sample size rule is followed, completing the proof.
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The authors discuss some of the known problems related to
flexible designs based on the combination test (Bauer, 1989;
Bauer and Köhne, 1994) or conditional error function princi-
ple (Proschan and Hunsberger, 1995). For a single adaptive
interim analysis, in both approaches the test statistic com-
bines two statistics calculated from the sample units observed
before and after an adaptive interim analysis (see, e.g., Posch
and Bauer, 1999). How to combine the two statistics must
be laid down in advance. Also some important features of
the distributions of the test statistics under the null hypoth-
esis have to be preserved by the adaptations. For example,
when stagewise p-values are used they follow independent uni-
form distributions on [0, 1], or, if stagewise z-scores are used
they follow independent standard normal distributions. The
principle is recursive, because an additional adaptive interim
analysis could be introduced for the remainder of the trial
after the first interim analysis, again fixing in advance how
the forthcoming two stagewise test statistics will be combined
(Brannath, Posch, and Bauer, 2002). The method allows flex-
ible changes in ongoing trials without compromising on the
type I error rate.

Sample size modification has attracted most interest. Be-
cause the modified sample size may depend on the first-stage
test statistic, it is not possible to use the actual sample size
for combining the stagewise test statistics. Therefore the com-
bination test will not be based on the sufficient statistic. Ob-

servations collected before and after sample size modification
will be weighted differently, a (known) property criticized by
the authors. They concede that to preserve the full flexibility
of adaptive designs it is typically impossible to characterize
the distribution of the resulting sample size: “In this case we
cannot construct a test with a correct type I error rate that
is based solely on the minimal sufficient statistics.”

It may not be reasonable to force midtrial sample size mod-
ification as a rule. The conditional power calculated at the
interim effect estimate generally will be a strongly biased es-
timate of the true conditional power (Bauer and König, 2006).
The corresponding modified sample sizes can be highly vari-
able with a large expectation (Jennison and Turnbull, 2003).
Tsiatis and Mehta (2003) have shown that there is always a
group sequential design in a sense more efficient than a design
with a prespecified sample size reassessment rule. Burman and
Sonesson point out a weakness of this result: costs and im-
pact of performing many interim analyses are not accounted
for. They do not believe that increasing the power in group-
sequential trials (choosing relatively small a priori effect sizes)
is the general answer. They mention situations where sample
size modification may be a useful option.

In Section 4.2 the article briefly refers to proposals from the
literature on how to avoid decisions of adaptive tests that are
in conflict with decisions derived from the common test statis-
tics (“dual test”): reject, if and only if the adaptive test and



Are Flexible Designs Sound? 677

the common test based on the overall sufficient statistics both
reject at the level α. By the way, Example 2 refers to sample
size modification after 100 experimental units, reducing the
recruitment from 900 to 1 after having observed a negative
effect! This is a misuse of the method. We could misuse also
other types of inference, for example, by always choosing an
unrealistically optimistic prior so that according to Bayesian
inference the decision does not require any experiment. Pos-
sible directional conflicts and how to deal with it have been
discussed from the very beginning (Bauer and Köhne, 1994).
In reasonable adaptive designs the dual-test principle will not
be associated with a prohibitive loss of power. The authors
mention that there may be a subset of the sample space where
sample size reassessment will never lead to inflation of the
type I error rate of the conventional test based on the sufficient
statistics. If for the test of a normal mean (variance known)
we follow a rule that in the case of large observed interim ef-
fects the sample size is increased (or decreased in the case of a
small effect) the conventional test never rejects if the adaptive
test does not reject (see Posch, Bauer, and Brannath, 2003,
Figure 5). However, the sample size rules that are likely to be
applied in practice (increase it in the case of a small observed
effect, or decrease it in the case of a large effect) may lead to
anticonservative conventional tests. But with such rules the
dual test does not lose power: a rejection of the adaptive test
is always accompanied by the rejection of the conventional
test. Here we will get large overall means that generally will
be biased (Brannath, König, and Bauer, 2006).

A way to maintain the conventional test statistics in flexible
designs is to adjust the level by considering the scenario that
produces the maximum type I error rate. Such an adjusted
likelihood ratio test with rejection region (Z ≥ Φ−1[1 − α∗]),
α∗ < α, will be conservative. It can be improved upon by
using an adaptive test that fully exploits the level α and re-
jects uniformly more often in any point of the sample space
(Brannath et al., 2006, Section 4.2.3). This can be seen by
considering the conditional error of the likelihood ratio test
(Proschan and Hunsberger, 1995; Müller and Schäfer, 2001):

CElr,α = Pr ob(
√

n1/(n1 + n2)z1 +
√

n2/(n1 + n2)Z2 ≥ z1−α),

where the probability is taken over the second-stage standard-
ized mean Z2 and z1−α denotes the (1 − α) quantile of the
standard normal distribution. By always taking the second-
stage sample size n2 = n2(z1) to maximize the conditional
type I error rate CElr,α (given n1, α, z1) we maximize its
overall type I error rate. The resulting sample size reassess-
ment rule is the worst-case scenario for which α∗ has to be
adjusted. It leads to the maximum conditional type I error
rate of the likelihood ratio test CEmax,α, which is just a func-
tion of z1. Taking the expectation of CEmax,α over z1 gives the
maximum type I error rate, which exceeds the targeted level
α. The adjusted likelihood ratio test applies a level α∗ < α,
such that the expectation of CEmax,α∗ over z1 is equal to α.
This CEmax,α∗ has been derived by Proschan and Hunsberger
(1995) for an unconstrained second-stage sample size (as-
suming stopping for futility). In an interim analysis we can
replace this “worst-case design” by another second-stage de-
sign with conditional type I error rate CEmax,α leading to an
adaptive test. Note that whenever we deviate from the worst-
case sample size reassessment rule, the conditional error rate

CElr,α∗ of the adjusted likelihood ratio test will be smaller
than the maximum conditional type I error rate CEmax,α∗ used
in the adaptive test. Hence the adaptive test with rejection
region (Z2 ≥ Φ−1[1 − CEmax,α∗ ]) rejects uniformly more often
than the adjusted likelihood ratio test with rejection region
(Z2 ≥ Φ−1[1 − CElr,α∗ ]). We could take this as an indication
that in flexible designs the use of likelihood ratio test statis-
tics may not be most efficient in terms of power. Clearly, the
unadjusted likelihood ratio test always rejects if the adjusted
test rejects. Hence a dual adaptive test may also uniformly
improve the adjusted test based on the likelihood ratio statis-
tics. This seems to be a remarkable property.

A crucial methodological issue not addressed by the au-
thors is estimation. Because the adaptation rules need not be
specified a priori, there is no predefined sample space. Solu-
tions have been discussed mainly for sample size modifications
(e.g., Brannath et al., 2006) but further clarification is neces-
sary. Note that the problem of bias does not arise from using
unconventional test statistics but from the adaptation itself.

One of the motivations to deal with flexible designs has
been the practice of performing design modifications by writ-
ing amendments to the study protocol without fully under-
standing the statistical impact. The real merits of flexible
designs will be adaptations going beyond sample size reassess-
ment. Examples of such adaptation are dropping treatments,
changing doses, modifying the test statistics, shifting interest
to subgroups, inserting or skipping interim analyses, or even
such controversial options such as modifying the primary end-
point (see, e.g., Posch et al., 2003). It should be possible (al-
though an ambitious exercise in real studies), for example, to
predefine formally specific midtrial treatment selection rules
based on variables quantifying efficacy, safety, costs, and eth-
ical issues. However, flexibility may be needed because exper-
imenters may not adhere to a formal rule in an environment
of evolving information. In the original papers (Bauer, 1989;
Bauer and Köhne, 1994; Bauer and Röhmel, 1995) changes
in the null hypothesis were allowed. Hence general adaptive
test procedures are testing an intersection null hypothesis and
problems of interpretation arise following a rejection. Infer-
ence on the individual null hypotheses based on the closed
testing principle can be performed (Bauer and Kieser, 1999;
Hommel, 2001). Note that in adaptive designs only stagewise
models have to apply. Complications in the interpretation of
results in such complex designs are a trade-off for the variety
of options offered by the design.

The concept of adaptive designs allows design modifications
at any (unscheduled) time by replacing the remainder of the
design by one which preserves the conditional type I error of
the preplanned design (Müller and Schäfer, 2004). This corre-
sponds to a “recursive” continuous application of combination
tests (defined implicitly by the preplanned design). The con-
ditional error principle will also lead to a deviation from the
sufficient statistics, but it can be applied to introduce flexi-
bility into conventional group sequential trials. We may plan
to combine stagewise test statistics as in a group sequential
trial. Then, if no design adaptation is performed the conven-
tional group sequential analysis will apply. This corresponds
to using the “inverse normal combination function” for stage-
wise p-values (Cui, Hung, and Wang, 1999; Lehmacher and
Wassmer, 1999). Preservation of the conditional error rate is
an ideal tool to deal with the unexpected. However, the exact
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calculation of the conditional error function will be difficult
if nuisance parameters are involved (for the t-test see Posch
et al., 2004). Another precaution refers to situations with a
delayed endpoint, if surrogate information for patients still
waiting for their endpoint is used for adaptation (Bauer and
Posch, 2004). Here strictly one has to work with the distri-
bution of the forthcoming endpoints given the information
used in the adaptation (Liu and Pledger, 2006), which may
be difficult in practice.

To include “learning from experience” into a design may
be an ethical or economic issue. The designs critiqued by the
authors are a general tool to handle flexibility during an ongo-
ing trial without sacrificing type I error control. Flexibility is
needed in practice and the statistical price to be paid for the
many options offered by the designs is known. The authors
have summarized the ongoing discussion. Is wine sound? It is
the way to drink it that matters. For adaptive designs it seems
that it is the way they are used, presented, and interpreted
that matters.
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1. Introduction
The article by Burman and Sonesson (B&S for short) is an
important contribution because it takes up logical inference
issues and gives good examples illustrating the problems.

To change a design might be well motivated. This has ear-
lier caused great concern because it might hurt the trust of
the study. Thus, it has been avoided as much as possible.
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The paper by Bauer and Köhne (1994) on a test that keeps
the significance level in spite of changes has many more than
100 citations. This indicates that many papers on this subject
have followed. This also indicates how great the hope is for
the possibility of flexible but valid studies.

The earlier criticism has been concentrated on inefficiency.
This is important, but logical faults are of great scientific and
practical concern. Like B&S, I will concentrate on the logical
questions, but I will concentrate on questions related to the
conditionality principle rather than the sufficiency principle.
The main issues will be illustrated by their example of sample
size modification by a test of the effect of a drug, and the same
notation will be used.

2. Inference Principles
To have a fixed significance level is not enough. Statistical in-
ference is a complicated kind of logic. The paper by B&S, and
most other papers on flexible design, are set within the fre-
quentist framework. General principles such as sufficiency and
conditioning are important and have been much discussed.
Even though no complete agreement has been reached on the
exact formulation of the principles, a violation of commonly
accepted principles should be a serious warning. It is impor-
tant in the study of a new drug that the results are not ma-
nipulated or even suspected of being manipulated.

The sufficiency principle tells us that it is inefficient to use
a statistic that is not sufficient for the problem. An example of
a violation of the sufficiency principle is the use of the median
instead of the mean when estimating the expected value of a
normal distribution.

The conditionality principle concerns the danger of letting
the conclusion depend on distributions that are ancillary for
the problem or to disregard important ones. According to
Fraser (2004) the conditionality principle is more fundamen-
tal than the sufficiency principle even though the latter is bet-
ter known. To concentrate on the main issues I describe the
case where the effect size μ is the only parameter. The sample
size N is an ancillary variable for inference about the effect μ
if the distribution of N does not depend on μ. As an exam-
ple, consider a randomized test where the conclusion about
the hypothesis depends on flipping a coin. This violates the
conditionality principle and is seldom used in practice. The
outcome of the coin flipping is an ancillary statistic and thus
should not be allowed to influence the conclusion.

Sometimes a very minor change of the problem can produce
an agreement with the inference principles. It is pointed out
by Cox and Hinkley (1974) that it is of interest to see whether
a statistic is approximately ancillary in some sense. A random
variable (corresponding to the sample size) can be considered
as an approximately ancillary statistic if it would have been
exactly ancillary if some less important boundary values of
the sample space were excluded. This was discussed by Frisén
in connection with a clinical study using matched pairs. Reid
(2003) gave many examples of approximate ancillaries based
mainly on asymptotic considerations.

3. The Modification Does Not Depend
on the Parameter of Interest

Here, the change of design is totally unrelated to anything
depending on μ. Examples could be an administrative mistake
or an unexpected cutting of funds by reasons unrelated to μ.

In this case N is an ancillary statistic and one should, by the
conditionality principle, condition on N and disregard the fact
that N is stochastic. It is thus correct to use what is called
the “naive” test if N is an ancillary statistic.

4. The Modification Depends
on the Parameter of Interest

If the change of design is related to the effect, then one has to
be very careful. If the distribution of N depends on μ, then N is
not ancillary for conclusions on μ. N might be approximately
ancillary but that is a separate issue.

The case where the modification depends on the observa-
tions achieved so far is the most obvious and challenging issue.
However, the same kind of problem can arise if the change
depends on external information related to the problem of in-
terest. Some, but not all, suggested methods require that the
design rule is known and the distribution of N can be used.

4.1 Design Rule Not Reported
Flexible designs have been advocated as being totally flexible
for which one does not even have to know or report the change.
Is there some method that is sound even if one withholds this
information?

The likelihood principle allows a totally flexible sampling
plan, for example, one can sample until significance (e.g.,
Z > 1.96) is achieved. In this case one will, with probabil-
ity 1, get a significant result even when there is no effect.

The “weighted” test avoids this by forcing a certain error
spending. This is done at the cost of violating the conditional-
ity principle. The ordering of the observations is an ancillary
statistic for a conclusion about the hypothesis. Thus, by the
conditionality principle the test statistic should not depend
on the ordering of the realized observations. B&S’s Example
2 illustrates the possibilities for manipulation of significance,
if one can give different weights to equally informative obser-
vations. In this example, the rule used was to increase the
conditional power for small values of μ, when the first ob-
servations indicate that the drug is ineffective. The same can
happen when the design rule is dependent on the parameter
of interest through external information. Suppose that in the
middle of a study, external information is obtained that makes
it clear that the drug is worthless. By the weighted test, one
now has the possibility of ending the study and, by only the
small cost of one additional observation, still has a chance to
announce that the drug is significantly better than the old
one.

The “dual” method is a modification of the weighted test
and cuts the edges so that very drastic examples cannot be
constructed. However, it suffers from violation of the same
inference principles. One can manipulate the significance by
a combination of the likelihood principle for the unweighted
test and by violating the conditionality principle for the
weighted one. If one gets internal or external evidence that
the drug has no effect, then one is allowed to sample with
extremely low weight until Z > 1.96, and then take one ex-
tra observation with the large remaining weight and thus
have the chance to announce that the drug is significantly
superior.

Whether the conditional or unconditional power is more
relevant has been discussed by Frisén (1980) and Brannath
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and Bauer (2004). However, without a known rule for the
design it is impossible to give the unconditional one, even if
that is the more logical one.

4.2 Design Rule Known
If the design rule can be determined before the experiment is
performed, then methods such as a group sequential test have
several advantages. However, methods for the case where the
design rule was not known until after the experiment was
performed are of interest.

To use the full likelihood for the problem and consider the
observed value of N and the distribution of N, as suggested
by Burman and Sonesson, is a good approach. The likelihood
ratio (LR) test can be used for different kinds of designs even
if some design rules will result in a dubious method. If the
rule was to do as in B&S’s Example 2, namely, to increase
the power for very low values of μ if one gets indications
that the drug is very bad, then one will have a very peculiar
test and a full report on the power function reveals that the
design was not sound. The problem of deciding whether N is
approximately ancillary for the problem (see Section 2) is not
specific for the LR method.

The “unweighted test” utilizes the distribution of N to
choose a critical level with the desired probability of reject-
ing the null hypothesis unconditional on N but disregards the
observed value of N. Because N is part of the minimal suf-
ficient statistic, it is not in accordance with the sufficiency
principle and is inefficient. This is demonstrated by a slight
difference in unconditional power in Example 4. However, the
logical issue might be still more disturbing. To withhold that
you know that you have performed a small experiment with
little information, just because you might have performed a
large-scale one, is not sound and is not in accordance with
accepted inference principles. In my view the unweighted test
is not viable.

To use a “conditional” test (see B&S, Example 3) when
N is not an ancillary statistic violates the conditionality
principle.

5. Conclusions
There is no easy way to handle an unplanned change in de-
sign. To gain control over the significance level is not good
enough. There are very misleading procedures that have a
controlled significance level. The concentration on a solution

to get a fixed significance level takes the focus away from the
important issue of evaluating information.

There is a correspondence between the conditionality and
the sufficiency principles. However, sufficiency focuses on ef-
ficiency. Analysis of conditionality focuses on logical issues.
Ancillary information should not be allowed to influence con-
clusions. However, this is the case when one gives equally
informative observations on different weights. The danger of
this is well demonstrated by B&S’s Example 2, where the last
observation gets a much larger weight than the others and
this disturbs the correspondence between significance and a
reasonable conclusion. The remarkable result is not that the
efficiency is low but that manipulation can produce a higher
power for very low values of μ and thus provide a chance for
a poor drug to look good.

My conclusion is that one should use planned adaptive de-
signs when one expects that it will be necessary to adapt
the design. If one unexpectedly has strong reasons to change
the plans, one should be very careful and give full information
about that. It is not sound to be so flexible unnecessarily that
methods which considerably violate accepted inference prin-
ciples have to be used. Changes in designs should be avoided
because there is no way to totally avoid that the trust in the
results is damaged.
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Bauer, P. and Köhne, K. (1994). Evaluation of experiments
with adaptive interim analyses. Biometrics 50, 1029–
1041.

Brannath, W. and Bauer, P. (2004). Optimal conditional error
functions for the control of conditional power. Biometrics
60, 715–723.

Burman, C.-F. and Sonesson, C. (2006). Are flexible de-
signs sound? Biometrics doi: 10.1111/j.1541-0420.2006.
00626.x.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics.
London: Chapman and Hall.

Fraser, D. A. S. (2004). Ancillaries and conditional inference.
Statistical Science 19, 333–369.

Frisén, M. (1980). Consequences of the use of conditional in-
ference in the analysis of a correlated contingency table.
Biometrika 67, 23–30.

Reid, N. (2003). Asymptotics and the theory of inference. An-
nals of Statistics 31, 1695–1731.

Rejoinder

Carl-Fredrik Burman
and Christian Sonesson

We are grateful for the stimulating comments and to the
editors for finding such insightful and diverse discussants.
Although quite different views are expressed, there is rela-
tive consensus on some central issues. All contributors seem
to agree that flexibility is sometimes needed but that unre-
stricted use of the weighted test is not sound.

The inferential issues discussed in the article are of funda-
mental importance to the science of statistics. If the statisti-

cal community would find flexible designs to be statistically
sound when applied to clinical trials, all experiments where
data accumulate over time would be affected. For example,
having counted half of the responses for an opinion poll, the
investigator could decide to increase the sample size. Even if
the sample size is not changed, it might have been, and an
orthodox frequentist analysis can therefore not be performed,
as the sample space is not defined.
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1. Is the Weighted Test, Following Sample Size
Modifications, Generally Valid?

It is well known that the weighted test violates the sufficiency
principle. A main point in our article is that the weighted test
may also lead to paradoxical conclusions. This is compellingly
demonstrated by Proschan and Hunsberger (1995) and Exam-
ple 2 in our article, where a significant positive effect is shown
although the average response is negative. Consequently, all
the discussants agree that the weighted test should not be
applied in an unrestricted way.

2. Are Prespecified Sample Size Modifications
and the Weighted Test Inadmissible?

We agree with Jennison and Turnbull (2006) that the
weighted test, not being based on the sufficient statistic, is
inadmissible and that adaptive choices of sample sizes lead
to modest gains compared to a group sequential design with
equal number of interim analyses. However, we would not
agree to label a sample size modification (SSM) “invalid” if
it is shown to be inefficient. Data from an inefficient design
may be highly convincing to the scientific community. Con-
sequently, we think that it is valuable to discuss the analysis
of data generated by a preplanned SSM design even if we do
not recommend this design. The examples in this discussion
and the article are chosen to illustrate the inferential issues,
not good designs.

3. Do We Have to Adhere to Inference Principles?
In the article, we have emphasized the sufficiency principle
but we also briefly mentioned the invariance principle, which
in our context implies that the order in which exchangeable
observations are collected should not affect the analysis (Cox
and Hinkley, 1974, p. 41–42). The conditionality principle im-
plies the same thing. Frisén regards the conditionality prin-
ciple as more fundamental than the sufficiency principle. We
tend to agree. For a general distribution, not belonging to
the exponential family, the weighted test will violate the con-
ditionality principle but not the sufficiency principle. We fo-
cused on the sufficiency principle, rather than the invariance
or conditionality principle, because we were thinking about
the problem of exchangeability in a sequential trial, a topic
also discussed by Proschan. For the examples in our article
the invariance principle is clearly violated, because at least
one observation is always taken after the first interim analy-
sis. Proschan “agree(s) that one should follow the sufficiency
principle” if the SSM “has been prespecified and must be fol-
lowed.” However, he argues that greater flexibility is needed
and that we should always anticipate that a prespecified rule
is not strictly followed.

Frisén stresses the importance of inference principles and
states that “a violation of commonly accepted principles
should be a serious warning.” This is a useful formulation;
we should not take the inference principles as absolute rules
but rather use them as guidance when assessing whether pro-
posed analyses are sensible. In many cases, the violation of
inference principles will lead to unacceptable consequences.
One such case is shown in Example 2.

4. How Should a Trial Be Analyzed after
Preplanned Sample Size Modifications?

Preplanned SSM designs provide a stimulating framework for
the discussion of statistical theory and highlight some of the
problems therein. Some problems are not specific to SSM—as
Frisén points out regarding the likelihood ratio (LR) test—but
can be well illustrated in this framework. Both Frisén and our
article focus on inferential logic, while Jennison and Turnbull
emphasize efficiency. For the sufficiency principle, credibility
and efficiency go hand in hand. However, the conditionality
principle may sacrifice power for validity. In some cases, N
is approximately ancillary, and the test should then be per-
formed conditional on N. In other cases, however, N is highly
informative about the effect and the conditional test is then
not sound. When using SSM, N is typically partly informative
and it is not obvious which test should be chosen.

Bauer discusses an “adjusted likelihood ratio test” and con-
cludes that “the likelihood ratio test statistics may not be ef-
ficient.” It should be pointed out that Bauer studies a test
based on Z alone, and not on the LR statistic derived in
our article. This statistic depends also on N. For each one-
point alternative hypothesis, a true LR test is most power-
ful by Neymann–Pearson’s lemma. Frisén is critical toward
the conditional and the unweighted tests, saying that they
violate the conditionality principle and the sufficiency princi-
ple, respectively. Formally, we disagree as the conditionality
principle is only applicable when an ancillary statistic exists,
and the unweighted test is a function of the minimal suffi-
cient statistic. More importantly, however, we agree that the
unweighted test is problematic. The critical level c may be
lower than the nominal critical level C = Φ−1(1 − α) for the
naive test. To illustrate this, take N1 = 1 and N2 as either 1 or
1000 depending on whether Z1 is negative or positive, respec-
tively. Then under the null hypothesis, P(Z >C |N = 2) �
α and P(Z >C |N = 1001) ≈ α. Consequently, c < C. If α =
5%/2, then c = 1.69 while C = 1.96. There is a continuum of
LR tests, for different alternatives μ′. In the simple example
above with only two possible sample sizes, both the condi-
tional test and the weighted test belong to this class. The
conditional type I error given that N = 2 is less than, greater
than, or equal to α, depending on whether μ′ is large, close
to 0, or at a certain intermediate value. Intuitively, if both
μ′ and N are large, then the conditional type I error can be
decreased while retaining the conditional power close to 1. It
can be noted that all admissible tests have at least one of
the critical limits smaller than C, as a result of the exam-
ple’s counterintuitive increase in sample size for large interim
effects. Furthermore, and similarly with the weighted test, ex-
amples can be constructed where the conditional test or an
LR test have a negative critical value for some values of N.

5. Is There Any Valid Frequentist Inference Following
Nonprespecified Sample Size Modifications?

Flexibility is sometimes needed, at least to respond to im-
portant unforeseen external information. When the SSM rule
is not predefined, however, the analysis is even more prob-
lematic. Proschan shows that no test based on the sufficient
statistic can maintain the significance level in this situation.
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Traditionally, frequentist statistics have required the sam-
ple space to be fully specified. The weighted test tries to
overcome this problem by requiring predefined weights and
by modeling the sample space of the p-values from different
stages. While strongly promoting flexibility, Proschan states
that “the greater the flexibility we allow, the more care we
must exercise to ensure a sensible test.” Having agreed that
unrestricted use of the weighted test is not always sensible, we
should therefore turn to consider whether a modified weighted
test could be acceptable.

6. Is the Dual Test Sound?
The dual test, requiring that both Zw and Z lie in the rejec-
tion region, joins frequentist α-level protection with Bayesian
focus on the data at hand, ignoring sampling properties. For a
fixed critical limit C, Zw >C implies Z>C for a large class of
SSMs. Bauer states that “in reasonable designs the dual test
will not be associated with a prohibitive loss of power” com-
pared to the weighted test. SSM followed by the dual test may
be inefficient when compared to a nonflexible group sequential
design for a fixed alternative. However, in the possibly rare
occasions where flexibility is needed, we do not have a fixed
alternative. External factors may radically change our mind
about, for example, which magnitude of treatment effects is
desirable to detect.

Jennison and Turnbull point out that the weighted and
naive tests may disagree. The main problem is the case when
Z is high while Zw is smaller, because high observations have
been downweighted. The data may then be convincing from
a Bayesian perspective while the dual test is nonsignificant.
This is a risk for the “producer,” not the “consumer.” We
therefore view this problem as considerably smaller than the
risk that significant results from a weighted test may be com-
municated while a low value of Z is ignored.

Frisén argues against the dual test. Although agreeing that
it avoids very extreme examples, she presents an interesting
example that combines a common criticism of Bayesianism
with our Example 2. First, sample until Z > 1.96, which will
occur almost surely under the null hypothesis. Then take one
single observation with very high weight to have a chance of
getting Zw > 1.96. This example could be seen as artificial;
under the null hypothesis the expected number of observa-
tions is infinite, yet the power is only α. However, one might
interchange the two stages in the example. Start by taking one
observation with weight close to 1. If the first-stage p-value p1

is less than α, continue sampling until both Z >C and N is at
least some minimum number. The results of this trial would
seem to be convincing if the only results communicated are
the total sample size and the dual test p-value.

A large number of trials could be started and ignored when-
ever p1 < α. Of course, the trial could have been stopped af-
ter one observation and a significant effect could be declared.
This problem is not new and extremely small trials will not
be convincing. The new problem is that by continuing the ex-
periment, the sample size seems to be large enough to make
the results seem credible.

The core of the problem is that Zw is essentially based on
one observation and not, as it would appear, on N observa-
tions. It might be useful to define an “effective sample size”
when interpreting the results from a weighted test. Remem-
ber that Zw = Σ

√
wkXk . Note that the true conditional or

unconditional variances of Zw are undefined if the SSM rule
is not prespecified and may be highly misleading even if the
SSM rule is prespecified. If instead we naively ignore that the
weights depend on the observations the obvious definition,
based on the signal-to-noise ratio, of an effective sample size
would be Neff = (Σ

√
wk )

2. The same expression can be mo-
tivated by considering the length of the confidence interval
(e.g., Brannath, König, and Bauer, 2006) based on the cor-
respondence theorem. For Example 2, with 101 observations,
we would have Neff = 16.9, indicating that much information
is wasted but still that the first stage contributes markedly to
the weighted Z score. In the more likely practical example of
equally weighted stages with 100 and 200 observations, Neff =
291.4 is rather close to N. How to best define the effective
sample size and whether the concept is a useful one is an
open question.

7. Point Estimates and Confidence Intervals
Bauer points out that “a crucial methodological issue not ad-
dressed by the authors is estimation.” In the article we wanted
to focus on the fundamental question of whether the hypothe-
sis test is valid. If that is not the case, the corresponding point
and interval estimates are of limited interest. The correspon-
dence theorem provides a rather general way to construct con-
fidence intervals and median unbiased estimates (Brannath
et al., 2006, Sections 3.2 and 4.1.1). In Example 2, this method
gives the point estimate +0.554 and 95% symmetric confi-
dence interval (+0.077, +1.031). Given that the average of
the observations is in fact negative, –0.005, this analysis is
not convincing. However, the length of the confidence inter-
val indicates how much information has been lost due to the
extremely unequal weighting.

8. Are Other Design Modifications of Value?
It is somewhat unfortunate that so much interest has been
focused on sample size. Bauer makes the relevant comment
that “the real merits of flexible designs will be adaptations go-
ing beyond sample size reassessment.” Many of these adapta-
tions imply that observations from different stages are not ex-
changeable. The intersection of null hypotheses, correspond-
ing to different parameters, may need to be tested. However,
if the same parameters are used for different stages, the suffi-
ciency principle and much of our discussion are still relevant.
If, for example, the residual variance is reduced by a certain
amount during the trial, the sufficiency principle would indi-
cate how observations should be weighted.

9. Practical Guidelines for Clinical Trials
Bauer says that Example 2 is a misuse of the method, and the
possibility of such misuse was exactly the intent of the exam-
ple. Choosing an unrealistically optimistic prior is, following
Bauer, a similar misuse of Bayesian statistics. In the Bayesian
example, the solution is transparency—the sufficient statistic
should be given so that the consumer may substitute his or her
own prior. Jennison and Turnbull conclude their comment by
asking us what we see as key criteria for a “valid” test. Using
Jennison and Turnbull’s own words, we believe that validity
is about being “credible to the intended audience.” The risk
with an “invalid” test is that it is misleading. As in Bauer’s
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Bayesian example, clear rules and transparency are needed
when reporting SSM experiments, especially in the area of
clinical trials. We therefore propose the following rules, based
on an ideal of transparency, as minimum requirements for the
communication of all clinical trials, adaptive or not, irrespec-
tive of sponsor and aims:

1. Register all clinical trials;
2. When reporting trial data, account for the preplanned

design and analysis. State and motivate any departures
from the planned design and analysis; and

3. Present the results of the preferred analysis in sufficient
detail in a web-based register, including, for example,
the sample size and a confidence interval. Give essential
parts of the sufficient statistic. For adaptive designs, give
the sufficient statistic for each stage.

By requiring preregistration of all clinical trials and pub-
lishing of the results in a web-based register, we can get more
reliable meta-analyses. Careful preplanning, considering the
possibility of low effects also, would eliminate much of the
need for SSMs. The two last rules are partly inspired by regu-
latory guidelines and the recently issued draft reflection paper
on flexible designs (European Medicines Agency, 2006) from
the EU regulatory agency. However, we place more emphasis
on the sufficient statistics. For a two-sample normal distribu-
tion trial with a small number of SSMs, the main analysis
should contain the p-value, point estimate, and confidence in-
terval for the preferred analysis. In addition, the sample size,
group averages, and sample variance should be given for each
stage. The overall sample size may be complemented with
an effective sample size. In more complicated situations, it
may be impractical to give the full sufficient statistics. For an
analysis of covariance (ANCOVA) model, for example, com-
ponents of the sufficient statistic related to nuisance variables
may have to be omitted. When SSM is performed after each
observation (Fisher, 1998), it may suffice that trends in re-
sponses are explored.

Adherence to the proposed rules would make it possible to
assess whether the conclusions from the primary analysis are
credible. If the investigator applies SSM and uses the weighted
test, it is possible for other scientists to do alternative anal-
yses, assess homogeneity of treatment effects between stages,
and combine the data with other trial results. Additional in-
formation could be valuable, but we think that the minimal
requirements are a good starting point.

10. Conclusions
We think that the statistical community should strive to reach
a consensus on the requirements that should be posed on the
use of flexible designs and the related inference. Our article
and the concrete suggestions, in this reply, for reporting of
clinical trials are attempts to provoke discussion about such
requirements.
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