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Abstract

It is shown that the optimal group sequential designs considered in Tsiatis and Mehta [2003. On
the inefficiency of the adaptive design for monitoring clinical trials. Biometrika 90, 367–378] are
special cases of the more general flexible designs which allow for a valid inference after adapting a
predetermined way to spend the rejection and acceptance probabilities. An unforeseen safety issue
in a clinical trial, for example, could make a change of the preplanned number of interim analyses
and their sample sizes appropriate. We derive flexible designs which have equivalent rejection and
acceptance regions if no adaptation is performed, but at the same time allow for an adaptation of the
spending functions, and have a conditional optimality property.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In a recent paper, Tsiatis and Mehta (2003) show that adaptive designs can be uniformly
improved by group sequential designs which are based on the sequential likelihood ratio
test statistics. This improvement, however, is possible only under the assumption that the
appropriate spending functions and sample sizes (power characteristics) can be completely
specified a priori and that interim analyses can be performed at no cost. In a specific clinical
trial, however, an adaptation of the sample sizes and the error spending functions could be of
advantage: usually not only the primary end point is of importance. Other information, e.g.,
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on safety end points, economic factors like treatment costs or costs of an interim analysis
play an important role as well.

Examples: (i) An unforeseen safety issue arising at the first interim analysis could imply
that the information on the safety parameters at later interim analyses would be insufficient
to justify early termination of the trial. In this case it is more efficient to skip the hypothesis
tests at later interim analyses (i.e., not to spend any level there) and recalculate the decision
boundaries for the final analysis accordingly. (ii) In another example new financial resources
(available, e.g. due to a promising interim result on the primary or secondary endpoints)
may allow for an increase of the overall or conditional power by enlarging the maximum
sample size thereby increasing the chance for a successful trial with more precise effect
estimates. (iii) Due to promising results from an early interim analysis and because of
increased competition (e.g. another company is starting a similar program) sponsors wish to
include an extra interim analysis before the planned final analysis to shorten the development
procedure.

Note that the adaptations mentioned in the examples, when based on the unblinded interim
data, are not possible within the classical �-spending approach, since they might inflate the
overall type I error rate, and hence invalidate the trial results. Therefore, methods which
allow for unscheduled design adaptations are useful, even though they can be theoretically
improved if all relevant information were available in advance.

In the sequel it is shown how to change the level and power spending characteristic of
a preplanned sequential likelihood ratio test using the adaptive design methodology. If no
adaptation is performed, the resulting rejection and acceptance regions are equivalent to
the sequential likelihood ratio test, and with adaptations the design is optimal, at least, in a
conditional sense.

2. Adaptive designs

Adaptive designs have been introduced for a control of type I error probability in cases
where information from unblinded interim data are used for adapting the design mid-trial
(Bauer, 1989; Bauer and Köhne, 1994; Proschan and Hunsberger, 1995). These designs can
be defined in terms of a conditional error function which has to be prespecified for every
time point where the trial design may be altered (Proschan and Hunsberger, 1995; Posch and
Bauer, 1999; Müller and Schäfer, 2001, 2004). The conditional error function at a specific
time point t of the trial is the probability under the null hypothesis H0 of rejecting H0
conditional on the data Yt accumulated so far. More formally, the conditional error function
At(Yt ) at time t is a deterministic measurable function of Yt with values in the unit interval
[0, 1] such that E0[At(Yt )] = � where E0 denotes the expectation under H0 and � is the
level of the trial. At time t one can choose the design for the remainder of the trial (based on
all available information) with a conditional rejection probability of at most At(Yt ) under
H0. Thus with P0 the null probability, the new design needs to satisfy

P0(reject H0|Yt )�At(Yt ), (1)

where the right-hand side of (1) is computed from the conditional null distribution of the
forthcoming data observed after t (according to the new design) given the data Yt observed
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until t. If adaptations are done in a measurable way, then

P0(reject H0) = E0[P0(reject H0|Yt )]�E0[At(Yt )] = �. (2)

Hence, the overall type I error rate is at most �, irrespective of the adaptations.
Remarks: (i) Liu et al. (2002) show how to deduce (2) from (1) if adaptations are restricted

to a countable set. They also give an example for an uncountable set of adaptations that
satisfy (1) up to null sets but violate (2). Hence, a strict proof of (2) is available only for
countable adaptations even when disjoint samples are recruited. However, this is not a severe
restriction for the practical use of adaptive designs, since the set of design parameters as
well as the set of values for each design parameter will in practice be always finite (even if
not prespecified in the protocol). (ii) It can become impossible to compute the conditional
error A(Yt ) of the original design and the conditional rejection probability P0(reject H0|Yt )

of the new design given the complete interim data Yt . Such a situation appears if nuisance
parameters are involved, for instance, in the context of survival studies if patients recruited
before t have events after t and the interim data contain information on covariables or safety
endpoints of these patients (cf. Schäfer and Müller, 2001; Bauer and Posch, 2004). To
compute conditional rejection probabilities given the data Yt would require the knowledge of
the joint distribution of all covariables (potentially driving the adaptations) and the endpoint
for H0. This distribution depends on nuisance parameters that are usually unknown. (iii) If
disjoint cohorts of patients are recruited before and after t then the conditional error function
A(Yt ) of the original design and the conditional type I error probability P0(reject H0|Yt ) of
the new design are independent from the information of covariables of patients recruited
before t.

3. Turning an optimally preplanned design into a flexible design

It has been argued by Müller and Schäfer (2001) that using the conditional error function
of a group sequential design allows one to combine optimality properties of group sequential
designs with the flexibility of adaptive designs. This will be illustrated for the sequential
likelihood ratio test in Tsiatis and Mehta (2003).

3.1. Sequential likelihood ratio test

A group sequential trial (whether adaptive or not) is represented in Tsiatis and Mehta
(2003) by a specific number of stages 1, . . . , K . The data obtained at stage j is represented
by the random vector Xj with values in a finite dimensional real vector space, and the
cumulative data of stage j by the random vector Yj = (X1, . . . , Xj ). We assume as in Tsiatis
and Mehta (2003) that the null and alternative hypotheses H0 and H1 are simple and imply
continuous and positive densities p0j (xj ) and p1j (xj ) for Xj . We further assume that Xi

and Xj are independent for i �= j under H0 and under H1. A sequential test based on such
data is a sequence of Yj -measurable rejection and acceptance regions (Rj ,Aj ) and the trial
is stopped at stage j if either Yj ∈ Rj (rejection) or Yj ∈ Aj (acceptance). We let further
R̄j =R1 ∪· · ·∪Rj and Āj =A1 ∪· · ·∪Aj , and define the probabilities �j =P0(R̄j ) and
�j = P0(Āj ) under the null hypothesis H0. The sequence �1 � · · · ��Kcorresponds to the
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�-spending function of Lan and DeMets (1983), and the sequence �1 � · · · ��K is denoted
by the �-spending sequence. Spending sequences of group sequential trials necessarily
satisfy �j + �j < 1 for all j < K and �K + �K = 1. Note that �K equals the overall level �.

Tsiatis and Mehta (2003) show that given the �- and �-spending sequence the test based
on the likelihood ratios is optimal in the sense that the rejection probability under H1 and the
acceptance probability under H0 are maximal for all stages j. Let Lj =p1j (Xj )/p0j (Xj ) be

the likelihood ratio of the data obtained at stage j and denote L̄j = �j
i=1Li (j = 1, . . . , K)

the sequential likelihood ratio test statistics. Given any �- and �-spending sequence one can
define a group-sequential test which is based on the sequential likelihood ratio test statis-
tics. To this end we let the first stage rejection and acceptance regions be RLR

1 = {L̄1 > b1}
and ALR

1 = {L̄1 < a1} with a1 and b1 such that P0(R
LR
1 ) = �1 and P0(A

LR
1 ) = �1. For

the stages j = 2, . . . , K we let RLR
j = {a1 �L̄1 �b1, . . . , aj−1 �L̄j−1 �bj−1, L̄j > bj }

and ALR
j = {a1 �L̄1 �b1, . . . , aj−1 �L̄j−1 �bj−1, L̄j < aj } with bj and aj such that

P(RLR
j ) = �j − �j−1 and P(ALR

j ) = �j − �j−1. Note that from �K + �K = 1 we get

aK =bK . According to Theorem 1 in Tsiatis and Mehta (2003) we have P1(R̄j )�P1(R̄
LR
j )

and P0(Āj )�P0(Ā
LR
j ) for all stages j and for every sequential test (Rj ,Aj ), j=1, . . . , K ,

which has the same �- and �-spending sequences.
Remark: Tsiatis and Mehta (2003) argue that every adaptive trial can be formulated as

a group sequential test (Rj ,Aj ), j = 1, . . . , K , with some specific � and �-sequence
and hence is uniformly improvable by the corresponding sequential likelihood ratio test.
However, in order to use the sequential likelihood ratio test the sample size adaptation rule
and the �- and �-spending sequence have to be known a priori and cannot be adapted in
the course of the trial. Similarly, the power is prefixed in such a group sequential design.
However, the choice of the sample size functions, �-, �-spending and power functions is a
question of the costs for false positive and false negative decisions (and the gain of correct
decisions), as well as the costs of the interim analyses and the sample sizes: minimizing
specific costs will lead to specific �- and �-spending and power functions. The costs of a
clinical trial depend on economic and medical factors which are usually difficult to quantify
even more at the beginning of the trial. The costs might become clearer in the course of
the trial as knowledge on these factors increase. Formally, adaptive designs allow one to
modify sample sizes and the �-, �-spending and power functions accordingly.

3.2. The resulting flexible design

We now show how the sequential likelihood ratio test can be modified mid-trial using all
the information collected so far without compromising the prespecified overall level �. As-
sume that an unscheduled adaptation is done at stage j < K based on the information from
stages 1 to j. We denote l1, . . . , lj the observed values of the likelihoods L1, . . . , Lj and as-
sume that ai � li �bi for i =1, . . . , j , i.e., no stopping condition has been raised until stage
j. The conditional type I error probability of the sequential likelihood ratio test at stage j is

ALR
j (l1, . . . , lj )=P0( R̄

LR
K |L1=l1, . . . , Lj =lj ). Since at � lt �bt for all t �j this is equal

to ALR
j (l1, . . . , lj )=P0( R̄

LR
K|j |L1=l1, . . . , Lj =lj ) with R̄

LR
K|j =∪K

i=j+1R
LR
i . The follow-
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ing notation will be useful in the sequel. For i > j let L̄i|j =�i
s=j+1Ls , bi|j =bi/�

j
t=1lt and

ai|j = ai/�
j
t=1lt . Notice that bi|j and ai|j depend on the data observed until stage j via the

likelihood l̄j =�j
t=1lt . Since at � lt �bt for all t �j if follows that RLR

j+1 ={Lj+1 > bj+1|j }
andRLR

i ={aj+1|j �L̄j+1|j �bj+1|j , . . . , ai−1|j �L̄i−1|j �bi−1|j , L̄i|j > bi|j } for i > j+
1. Hence ALR

j (l1, . . . , lj ) is the type I error probability of a sequential likelihood ratio test
which starts at stage j+1, has at most K−j stages, and rejection and acceptance boundaries
ai|j and bi|j , i = j + 1, . . . , K .

According to (1) the trial can be continued with any test with conditional level
Aj(l1, . . . , lj ). Of course, the originally planned test satisfies this condition.

3.3. Conditionally optimal flexible design

As an example for an adaptation, consider the case where the preplanned �- and �-
spending sequences are altered at the interim analysis. To this end we introduce a conditional
version of the spending sequences. For i = j + 1, . . . , K let �i|j = �i|j (l1, . . . , lj ) =
P0( R̄

LR
i | l1, . . . , lj ) and�i|j=�i|j (l1, . . . , lj )=P0( Ā

LR
i | l1, . . . , lj )denote the sequences

of the conditional rejection and acceptance probabilities for the remainder of the preplanned
sequential likelihood ratio test. We refer to them as the conditional �- and �-spending
sequence. Obviously, �i|j +�i|j < 1 for i = j + 1, . . . , K − 1 and �K|j +�K|j = 1. Further,
there is a simple relationship between the conditional and unconditional �- and �-sequences,
namely, for all i > j , �i = P0(∪j

t=1Rt ) + E0[ �i|j (L1, . . . , Lj )] and �i = P0(∪j
t=1At ) +

E0[�i|j (L1, . . . , Lj )], where expectation is taken over L1, . . . , Lj .
The new sequential design for the remainder of the trial can be fixed based on the un-

blinded interim data. It might have a larger or smaller maximum number of inspection times
K̃ , altered sample sizes per stage, and some new conditional �- and �-spending sequences,
say �̃j+1|j � · · · � �̃

K̃|j , and �̃j+1|j � · · · � �̃
K̃|j with �̃i|j + �̃i|j < 1 for i < K̃ − 1 and

�̃
K̃|j + �̃

K̃|j = 1. According to (1) the only condition required for a control of the overall

type I error rate is �̃
K̃

�ALR
j (l1, . . . , lj ). In general, a change of the conditional spending

sequences will cause also a change of the unconditional spending sequences.
Given the new conditional �- and �-sequences �̃i|j and �̃i|j (i > j ), we can still use the

likelihood ratios of the forthcoming stages by applying appropriate (conditional) acceptance
and rejection boundaries ãi|j and b̃i|j for i > j . The new conditional boundaries can be
determined as the boundaries of a sequential likelihood ratio test (cf. the end of Section
3.1) but now using conditional rejection probabilities instead of unconditional rejection
probabilities. According to Theorem 1 of Tsiatis and Mehta (2003), the resulting test is
optimal conditional on the interim data and the adaptively chosen conditional �- and �-
sequence.

4. Concluding remarks

In general, adaptive tests are no sequential likelihood ratio tests. This is the case also
for the adaptive test described above, although it is built up using the likelihood ratios
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of the individual stages. According to Theorem 1 in Tsiatis and Mehta (2003), choosing
the “right” spending function from the beginning would allow for a more efficient test
design. However, such a choice may not be possible in practice. Moreover, for a design
with sample size recalculation, the suggestion of Tsiatis and Mehta (2003) means to replace
an adaptive design by a sequential design which has a substantially larger number of interim
analyses. This is acceptable only in cases where the costs of an interim analysis are small.
Interim analyses require statistical and data management resources. They can lead to a
substantial delay in time or face the problem of overrunning patients which cannot be
included in the interim analysis. Unblinding the data mid-trial also bears the danger of
corrupting the integrity of the trial because of a leakage of interim results to investigators
and others involved in the trial. For these reasons many clinical trials have a rather small
maximum number of interim analyses. Posch et al. (2003) demonstrate that adaptively
inserting or skipping interim analyses in an adaptive design can provide an efficient strategy
to save interim analyses without increasing the average sample size. Another important
issue for adaptive designs is the control of conditional power which requires sample size
recalculations. Brannath and Bauer (2004) give examples from applications where a control
of conditional power is essential, and they identify two stage designs which minimize the
expected sample size while keeping the overall level, the overall power and the conditional
power at prespecified levels. It turns out that such designs differ from group sequential
designs and from adaptive designs which use the conditional error function of a group
sequential design.
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