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Flexible designs offer a large amount of flexibility in clinical trials with control of the type I error

rate. This allows the combination of trials from different clinical phases of a drug development

process. Such combinations require designs where hypotheses are selected and/or added at interim

analysis without knowing the selection rule in advance so that both flexibility and multiplicity issues

arise. The paper reviews the basic principles and some of the common methods for reaching flexibility

while controlling the family-wise error rate in the strong sense. Flexible designs have been criticized

because they may lead to different weights for the patients from the different stages when reassessing

sample sizes. Analyzing the data in a conventional way avoids such unequal weighting but may inflate

the multiple type I error rate. In cases where the conditional type I error rates of the new design (and

conventional analysis) are below the conditional type I error rates of the initial design the

conventional analysis may, however, be done without inflating the type I error rate. Focusing on a

parallel group design with two treatments and a common control, we use this principle to investigate

when we can select one treatment, reassess sample sizes and test the corresponding null hypotheses by

the conventional level a z-test without compromising on the multiple type I error rate. Copyright #

2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiplicity and flexibility issues are among the
major topics in the current discussion on clinical

trial designs for pharmaceutical research [1]. In
particular, trial designs with the possibility of
selecting treatments, endpoints and population
subgroups in the course of the trial at interim
analyses have recently attracted much interest
[2–12] and are controversially discussed by mem-
bers from academia, industry and regulatory
agencies [13–15]. The reason for this interest isyE-mail: werner.brannath@meduniwien.ac.at
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the possibility to combine trials from different
clinical phases into a single trial which bears the
potential of speeding up the development process
of pharmaceutical products. The combination of
phase IIb and III trials is the most frequently
considered application [6–10, 12, 16], but combina-
tions of other phases e.g. of phase IIa and IIb were
considered as well [17]. An important issue in both
contexts is control of the multiple type I error rate
of the combined trial either to achieve approval of
the drug by regulatory agencies or to obtain a
proof of principle for the new pharmaceutical.

Another important issue is flexibility with
regard to design modifications. Although pre-
specification of the rule for the adaptations at
interim analyses is helpful, in practice, investiga-
tors often feel uncomfortable to be bounded to
fully pre-specified rules such that adaptation at
interim becomes an automatic process. The reason
for this uncomfort is the complexity in the
planning of classical phase IIb or phase III trials.
For instance, which treatments to pass over to the
next clinical phase typically depends on the
accumulated information on the primary and
secondary efficacy variables as well as safety
endpoints. Moreover, often information from
several trials (some running in parallel) is used to
guide the planning of later phase trials. Hence, in a
combined phase IIb+III trial, for instance, one
may expect that at the end of the internal phase IIb
part new information from other external trials is
available for planning the phase III part of the
combined trial (see, e.g. [16]). This leads to a
complex interplay between internal and external
information in the internal decisions making
process which can hardly be foreseen in all details
at the beginning of the phase IIb+III trial. A
design that guarantees control of the (multiple)
type I error after design adaptations that are not
fully laid down in advance is often denoted a
flexible design.

It is important to notice the fundamental
difference between flexibility and adaptivity. Adap-
tivity is often understood as the possibility to
change design features during the ongoing trial
based on interim data. Many designs have been
suggested which incorporate adaptivity, however,

are in no means flexible, since the rule of how the
interim data determine the design of the second
part of the trial is assumed to be completely
specified in advance. In this case, we might better
speak of pre-specified adaptivity. Recent definitions
of adaptive designs [15, 18] seem not to make this
clear distinguishing between flexibility and pre-
specified adaptivity. Several designs with pre-
specified adaptive treatment selection rules have
been suggested in the recent years [6, 7]. These
designs may be a starting point for a flexible
design; however, additional efforts are required to
allow the investigator to deviate from the pre-
specified rule.

The focus of this paper is on methods that
introduce flexibility to clinical trials with multiple
testing. Two major approaches will be discussed.
One approach is based on flexible closed tests
suggested in [2–4]. Here, one utilizes the method of
combination tests and the closed testing principle.
Another approach is to start with either a fixed
sample size design or a design with pre-specified
adaptivity and to utilize its conditional type I error
rates in order to achieve flexibility [19, 20]. One of
the advantages of this approach is that in the case
where no deviation from the pre-specified rules is
required, one can just complete the trial as pre-
specified. This approach has been recently applied
to obtain confidence intervals following a flexible
group sequential design [21] and to designs with
interim selection of treatment arms and multiple
testing based on the conditional type I error rates
of fixed sample size Dunnett tests [12].

Whatever method we use, flexible designs have
the disadvantage that in the final analysis patients
of different stages may be weighted differently.
Equal weights would be achieved by analyzing the
altered design in a conventional way as if the new
design were envisaged from the beginning. Such
conventional analysis, however, may inflate the
type I error rate. Moreover, the type I error rate of
the conventional analysis depends on the unknown
adaptation rule and hence cannot be quantified. In
some cases, however, it is possible to analyze the
data in a conventional way, although design
features were changed in an unforeseen manner
based on unblinded interim data. In [10],
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hierarchical tests are considered where the trial
starts with two doses and the lower dose may be
dropped at an interim analysis based on the
unblinded interim data. The multiple level cannot
be increased whatever rule is used for dropping the
lower dose. In [10], the case where the higher dose
may be dropped due to safety problems is also
considered, and it is shown that we can test the
lower dose with the conventional level a z-test if
the toxicity and efficacy endpoints are non-
negatively correlated. Often, however, it is not
clear whether the correlation between toxicity and
efficacy endpoints is indeed non-negative.

After giving a review on flexible designs with
multiple testing, we shall consider in this paper
another more general method than in [10] to
decide whether a conventional analysis after
design adaptations is possible or not. The method
is based on conditional type I error rates and
requires that conditional type I error rates of the
original and altered design can be computed [20].
A conventional analysis is possible whenever the
conditional type I error rate of the altered design is
below the conditional type I error rate of the pre-
specified design, since decreasing the conditional
type I error rate cannot inflate the overall type I
error rate (but may deflate it). We use this method
to explore the case of a parallel group design with
two treatments and a common control, and
determine for which interim results we can select
one treatment, possibly reassess sample sizes and
test the corresponding null hypothesis with the
conventional level a z-test.

2. REVIEW OF METHODS FOR
DEALING WITH FLEXIBILITY AND
MULTIPLICITY

2.1. Conditional invariance principle

Flexible designs follow a common principle which
we may call conditional invariance principle.
Assume a flexible trial with two sequential parts
(e.g. phase IIb and phase III part) where the design
features of the second part are chosen based on the
data from the first part (called interim data below)

as well as external information. We consider here
the behavior of the trial under a specific elemen-
tary null hypothesis H: Let T2 denote the statistics
for H from the second part. Due to the data-
driven choice of the design features, T2 will in
general depend on the interim data. However, we
often can transform T2 in a way that the
conditional null distribution of T2 given the interim
data and the second-stage design equals a fixed
pre-specified null distribution, and hence is invar-
iant with respect to the interim data and mid-trial
design adaptations. An invariant conditional dis-
tribution is typically achieved by transforming T2

to a p-value q which is uniformly distributed
(conditionally on the interim data and second-
stage design) under H: Usually, the invariance of
the conditional null distribution of q implies that q
is statistically independent from the first-stage
data. The currently most rigorous verification of
this can be found in [22].

Since the common distribution of the interim
data and q is known and invariant with respect to
the unknown mid-trial adaptation rule, we can
specify a level a rejection region in terms of the
interim data and q: This gives a test with type I
error rate a independently from the adaptation
rule. In the case of nuisance parameters, the
rejection region would need to be specified in
terms of a pivotal first-stage test statistics and the
second-stage p-value q:

Note that in the following we do not formally
distinguish between random variables and it
realizations. It should be clear from the context
whether we speak of the observed value of the
random variable or the random variable itself
before its observation (i.e. its statistical proper-
ties).

2.2. Conditional error function approach and re-

lated methods

2.2.1. Conditional error function approach.

An invariant rejection region can be implemented via
the so-called conditional error function approach.
With the conditional error function approach,
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we pre-specify a function 04Aðinterim dataÞ41
of the interim data which meets the level
condition:

EHAðinterim dataÞ4a

The function Aðinterim dataÞ is called conditional
error function and must be pivotal in the sense
that the maximum of the expectation under H
can be determined. The conditional error function
A is used as conditional significance level for
the second part of the trial, i.e. we reject the null
H at stage 2 iff q4A: Since q is uni-
formly distributed and independent from A; we
get that

PHðreject HÞ ¼PH ½q4Aðinterim dataÞ�

4EHAðinterim dataÞ4a

independently from the adaptation rule. Note that
the function Aðinterim dataÞ must be specified in
advance in the planning phase of the trial.
Note further that an interim rejection and
acceptance rule can be implemented by defining
Aðinterim dataÞ ¼ 1 and Aðinterim dataÞ ¼ 0;
respectively. For instance, A ¼ 1 implies rejection
of H for any q; and hence, H can be rejected at
stage 1.

2.2.2. Combination tests.

Proschan and Hunsberger [23] consider condi-
tional error functions AðpÞ which are non-decreas-
ing functions of a first-stage p-value p for H: Since
p is uniform under H; AðpÞ is pivotal. In [24, 25],
combination tests are suggested where the first- and
second-stage p-values p and q for H are combined
by some combination function as in meta-analysis
p-values from different trials. Combination tests
and conditional error functions AðpÞ are just two
different ways for specifying a rejection region in
the two-dimensional ðp; qÞ-plane. Hence, both
methods are equivalent [26, 27]. We will see below
that when testing the intersection of two or more
hypotheses, then A may depend on two or more
pivotal first-stage test statistics.

2.2.3. Starting with a conventional design.

In [19, 20], it is suggested to start with a conven-
tional test design at level a (e.g. fixed sample size or
group sequential design) and to use its conditional
type I error rate as conditional error function at an
interim look. Let j be the test decision function of
the initial design, i.e. j ¼ 1 if the initial test rejects
and j ¼ 0 if it accepts. Assume that we perform an
interim analysis after the recruitment of a fraction
of the initially anticipated total patient number.
Assume further that we learn from the interim
data and/or external information that we should
change design features like, e.g. the sample sizes.
We can compute in this case the condi-
tional rejection probability Aðinterim dataÞ ¼ EH

ðjjinterim dataÞ under the null and to choose a
new test *j for the altered design such that *A ¼
EHð *jjinterim dataÞ4Aðinterim dataÞ: Should we
decide from the interim data that no change of the
original design is required, then we can just follow
the pre-specified design and test j: Following
this principle, the conditional type I error rate of
the second part of the trial, i.e. the part following
the interim analysis, will never exceed A�
ðinterim dataÞ; whether we alter or stay with the
initial design. Hence, the overall type I error
rate will be bounded by EHAðinterim dataÞ ¼
EH ½EHðjjinterim dataÞ� ¼ EHj4a:

The method of Müller and Schäfer could, in
principle, be applied to any design with pre-
specified adaptivity to add flexibility to this design.
To apply this method we must, however, be able to
compute (or at least estimate) the conditional type
I error rate of the initial test j which can become
difficult in the presence of nuisance parameters
[28, 29].

2.3. Flexible closed tests for testing several

hypotheses

Flexible closed tests [2–4] are based on the closed
testing principle which is a general and simple
method for obtaining multiple tests for k null
hypotheses with strong control of the family-wise
error rate.
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2.3.1. Closed testing principle.

With the closed testing principle one first defines
for all intersection hypotheses HJ ¼

T
j2J Hj with

J � I1 ¼ f1; . . . ; kg a level a test cJ (cJ ¼ 1 if the
test rejects and cJ ¼ 0 if it accepts). The hypoth-
esis Hi for i 2 f1; . . . ; kg is rejected with the closed
testing principle if the level a tests cJ for all HJ

with i 2 J � f1; . . . ; kg reject, i.e. mini2J�f1;...;kg cJ

¼ 1: Hence, the test decision function for Hi in the
closed test is fi ¼ mini2J�f1;...;kgcJ : One can easily
see that the closed testing principle controls the
family-wise error rate in the strong sense: let Jtrue
denote the index set of the true null hypotheses. By
the closed testing principle, we must reject the level
a test for HJtrue in order to reject any of the true
null hypotheses Hj ; j 2 Jtrue: Hence, the probability
to reject at least one trueHj is bounded by the level
a of the test for HJtrue :

In the case of two hypotheses H1 and H2; for
instance, we start with level a tests c1 and c2 for
H1 and H2 and a level a-test c1;2 for H1;2 ¼
H1 \H2: The first hypothesis H1; for instance, is
rejected with the closed testing principle ifH1;2 and
H1 are rejected by their level a tests, i.e. f1 ¼
minðc1;2;c1Þ ¼ 1:

2.3.2. Flexible closed tests with conditional error
functions.

In a flexible closed test, the local level a tests cJ are
flexible tests [4]. As described in Section 2.2, the
flexible test for HJ can be realized by a conditional
error function AJðinterim dataÞ and second-stage
p-value qJ such that cJ ¼ 1 if qJ4AJ ðinterim dataÞ
and cJ ¼ 0 otherwise. In order to meet the
level condition, the conditional error function AJ

ðinterim dataÞ must satisfy EHJ
AJ4a: Each

conditional error function AJ should be pivotal
in the sense that we can determine its maximum
expectation (or at least an upper bound) under
HJ : Note that all conditional error functions
AJ ; J � f1; . . . ; kg; must be specified in advance.

At the first stage, we can decide to continue with
a subset I2 � I1 of hypotheses (including the case
I2 ¼ I1 where all hypotheses are selected). We

accept all Hi that are not selected, i.e. i =2 I2: To test
Hi for i 2 I2 with the closed test, we only need to
consider the intersection hypotheses HJ where i 2
J: Hence, we only need to perform flexible tests for
all J where J \ I2 is non-empty. In the flexible test
for HJ ; we can use the second-stage p-value qJ\I2
of HJ\I2 since HJ implies HJ\I2 : In this case, the
level a test for HJ (used in the closed test) has the
rejection rule qJ\I24AJ :

2.3.3. Example: testing two treatments.

As an example assume that we start with two
treatments and a control group in a parallel group
design for testing the non-efficacy null hypotheses
H1 and H2 of the treatments 1 and 2, respectively.
The goal of the study is to demonstrate efficacy for
at least one treatment. Let A1; A2 and A1;2 be the
conditional error function for H1; H2 and H1;2;
respectively. At the first stage, we can now decide
which sample sizes and which tests we want to use
at the second stage. Since we use flexible tests, the
decision can be based on the data of the first part
of the trial and any external information. When
going with both treatments into the second part,
we could, e.g. use t-tests for H1 and the Dunnett
test for H1;2 leading to p-values q1; q2 and q1;2:
Note that q1; q2 and q1;2 are computed from the
data of the second patient cohort only. The flexible
closed test then rejects, e.g. the hypothesis H1 if
q14A1 and q1;24A1;2: We could, however, also
decide to continue only with the first treatment
and to terminate the second treatment arm. In this
case, q2 and q1;2 cannot be computed due to the
missing second treatment arm. Since we are not
further interested in rejecting H2; the dropping of
this dose is equal to the acceptance of H2:
Consequently, we need not compute a second-
stage p-value q2: However, we need to do the
flexible test for H1;2: Here, we can use as second-
stage p-value q1 which is also conservative under
H1;2 because the intersection hypothesis impliesH1:
Deciding after the first stage to use q1 also for
H1;2; we would finally reject H1 iff q14A1 (test for
H1) and q14A1;2 (test for H1;2), i.e. iff q14min
ðA1;A1;2Þ:
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2.3.4. On the choice of the conditional error
functions AJ :

In [2–4], all conditional error functions AJ ¼ AðpJÞ
are a function of the first-stage p-value pJ for HJ

whereby the function Að�Þ is the same for all J � I1:
For instance, AJ ¼ c=pJ (with c the critical value
of Fisher’s product test) results in using Fisher’s
combination tests for all HJ [2, 25]. For a control
of the multiple type I error rate, it is, however, not
required to use a function AðpJ Þ of the first-stage p-
values pJ for AJ : In [12], for instance, the
conditional type I error rate of a fixed sample size
Dunnett test (assuming a common known var-
iance) is used in a trial where k parallel treatments
are compared with a control group with regard to
one sided null hypotheses Hi : mi4m0 where mi and
m0 are the means of the treatment i ¼ 1; . . . ; k and
control group, respectively. For the elementary
hypotheses Hi; the null conditional rejection
probability of the z-test is used. Assume, for
example, that k ¼ 2: Then the conditional type I
error rate for Hi from the z-test is

Aiðz
ð1Þ
i Þ ¼PHi

ðZi5z1�ajz
ð1Þ
i Þ

¼ 1� F

ffiffiffi
n

p
z1�a �

ffiffiffiffiffi
n1

p
z
ð1Þ
iffiffiffiffiffiffiffiffiffiffiffiffiffi

n� n1
p

 !
ð1Þ

and for the Dunnett test of H1;2

A1;2ðz
ð1Þ
1 ; z

ð1Þ
2 Þ ¼PH1;2 max

i2f1;2g
Zi5d jzð1Þi ; i 2 f1; 2g

� �

¼ 1�
Z 1
�1

Y2
i¼1

F d2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

n� n1

r�"

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1

n� n1

r
z
ð1Þ
i þ x

��
fðxÞ dx ð2Þ

where fðxÞ; FðxÞ and z1�a denote the density, the
cumulative distribution function and the 1� a
quantile of the standard normal distribution, Zi is
the final test statistic for Hi based on all n
observation per group, z

ð1Þ
i is the standardized

treatment-control difference for treatment i based
on the first n1 observations per group, and d is the
Dunnett critical boundary accounting for two
treatment-control comparisons [12]. Using the
conditional error functions (1) and (2) provide a

method for selecting treatments and reassessing
sample sizes in a fixed sample size Dunnett test
without pre-specifying the selection and reassess-
ment process. As shown in [12], this method has
preferable properties in terms of power when
compared with other flexible closed tests.

2.3.5. Extensions.

Flexible closed tests can be extended to allow
rejection and acceptance of hypotheses at the
interim analysis by defining AJ ¼ 1 and 0 for
specific interim data [2–4]. The hypotheses Hi can
be rejected at the first stage iff AJ ¼ 1 for all J � I1
with i 2 J: If AJ ¼ 0 for at least one J 2 i; then Hi

must be accepted. One can further extend the
method for the possibility of adding hypotheses
which have not been considered at stage one to be
considered at stage two [4, 8].

3. FLEXIBLE SWITCHING BETWEEN
CLASSICAL TESTS WHEN
SELECTING TREATMENTS

The flexible design methodology of the previous
section is a general and powerful method to
analyze flexible designs where, e.g. sample sizes
are reassessed and treatments are selected mid-
trial. This method, however, has the disadvantage
to lead to unusual tests where, in case of sample
size reassessments, the patients from the different
stages are weighted unequally [26, 30]. In practice,
we may therefore tend to follow a simpler and
more intuitive approach. For instance, when
selecting one of two treatments at the interim
analysis, we may prefer to test the selected
treatment by the conventional level a z-test. It is
well known that using the conventional z-test in
case of treatment selection may lead to an inflation
of the multiple type I error rate. However, we can
use conditional type I error rates to decide whether
such a strategy has the potential to increase the
type I error rate or not. Type I error inflations are
avoided if the conditional type I error rate of the
new design (z-test for selected treatment) is below
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or equal to the conditional type I error rates of the
initial design (multiple test for both treatments)
since decreasing the conditional type I error rates
cannot inflate the overall type I error rate.

More specific, consider the comparison of two
treatments with a control in a parallel group
design for testing the null hypothesis Hi : mi4m0
against the alternative hypothesis HA

i : mi > m0
(with i ¼ 1; 2) in the homoscedastic normal model
with known variance s2 and unknown means mi;
i ¼ 0; 1; 2: Let n denote the a priori planned group
sample size. In the initially planned design, an
elementary null hypothesis Hi is rejected if the
z-test for dose i is rejected at level a and the
intersection hypothesis H1;2 ¼ H1 \H2 is rejected
by a pre-defined level a test. According to the
closed testing principle, this controls the multiple
type I error rate. Assume that at an interim look
we come to the decision to drop a dose and
possibly change the total sample size *n for the
selected dose without specifying this in advance.
Let s be the index of the selected dose. If a dose is
dropped, then we compare the conditional error *As

of the conventional level a z-test for the selected
dose s (where *As is defined as in (1) with the new
total sample size *n instead of n and s instead of i)
with the conditional errors for Hs and H1;2 of the
initial planned design. If *As4minðAs;A1;2Þ; then
we can do the adaptation and use the conventional
z-test because the z-test for Hs then gives a
conservative test for both Hs and H1;2:

We consider two different initial test designs, the
hierarchical test procedure with a pre-defined
order and the step-down Dunnett test. We identify
for a range of the standardized interim effects and
specific second-stage sample sizes whether we can
select one treatment and test the corresponding
null with the conventional z-test without inflating
the conditional type I error rates for Hs and H1;2;
thereby not inflating the multiple type I error rate.
We chose the initial sample size n per group such
that the individual treatment-control comparisons
have power 1� b ¼ 0:80 with a one-sided z-test at
a ¼ 0:025 for the alternative dA ¼ ðmi � m0Þ=s ¼ 1;
i.e. n ¼ 2ðz1�a þ z1�bÞ

2=d2A: Two different timings
of the interim analysis are considered, namely after
n=4 (Figure 1) and n=2 (Figure 2) observations per
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Figure 1. In the gray area, one can switch from the

initially planned design to the conventional level a z-test

for the selected treatment depending on the standardized

interim effects z
ð1Þ
i without compromising the type I error

rate; interim look after n1 ¼ 0:25n observations per

group; hierarchical test (a)–(d), step-down Dunnett test

(e)–(h); sample size reassessments with a new second-

stage sample size *n2 ¼ *n� n1 for the selected treatment

and the control: (a) and (e): *n2 ¼ 0:25n (decrease), (b)

and (f): *n2 ¼ 0:75n (as pre-planned), (c) and (g): *n2 ¼
1:125n (reallocation of the sample size of the dropped

treatment), (d) and (h): *n2 ¼ 1:5n (increase).
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treatment group. No interim efficacy testing is
foreseen. Four strategies to adapt the sample size
per group are considered: a decrease, staying with
pre-planned samples size, reallocating the sample
size of the dropped treatment to the selected one
and the control and a major increase.

3.1. Hierarchical test procedure

In the hierarchical test procedure without dose
selection, the null hypotheses are ordered in the
sequence H2 followed by H1: The procedure starts
with testing the null hypothesis H2: The null
hypothesis for the lower dose H1 is rejected if itself
and the null hypothesis of the higher dose is
rejected both at level a: Hence, the test for the
higher dose is identical with the test for the
intersection hypothesis H1;2: By the closed testing
principle, this procedure controls the multiple type
I error rate at level a [31]. Note that the
conditional error for the intersection H1;2 is given
by the conditional error for the higher dose, A1;2 ¼
A2; because the underlying tests are identical.

The lower dose can always be dropped for
any reasons. As long as the sample size for the
higher dose remains unchanged, the multiple type I
error is controlled since the test for the intersection
hypothesis is as pre-specified [10]. In the case
of a sample size reassessment for the higher dose
and control group, the multiple type I error
may be inflated in the same way as in a single
dose trial [23]. In [30], interim sample points and
sample sizes are identified where there is a zero
probability that the conventional z-test accepts but
the flexible test (based on the conditional type I
error rate of a classical z-test with sample size n)
rejects (see also [32]). It can be shown that these
are exactly those sample points and sample sizes
where the conditional type I error rate with the
reassessed sample size *n is below the conditional
type I error rate with initially planned sample size
n: It can been seen from Figure 5 of [30] that an
increase in sample size is possible for large
treatment effects and a decrease is possible for
small interim effects.

We now consider the case where the higher dose
is dropped during the trial, e.g. due to safety
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Figure 2. In the gray area, one can switch from the

initially planned design to the conventional level a z-test

for the selected treatment depending on the standardized

interim effects z
ð1Þ
i without compromising the type I error

rate; interim look after n1 ¼ 0:5n observations per

group; hierarchical test (a)–(d), step-down Dunnett test

(e)–(h); sample size reassessments with a new second-

stage sample size *n2 ¼ *n� n1 for the selected treatment

and the control: (a) and (e): *n2 ¼ 0:25n (decrease), (b)

and (f): *n2 ¼ 0:5n (as pre-planned), (c) and (g): *n2 ¼
0:75n (reallocation of the sample size of the dropped

treatment), (d) and (h): *n2 ¼ 1:5n (increase).
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problems. If the lower dose has a smaller
first-stage standardized mean than the larger
dose, z

ð1Þ
1 4z

ð1Þ
2 ; then the conditional error

function of the usual z-test is smaller for the lower
dose than for the larger dose, A14A2 ¼ A1;2:
Hence, without a sample size adjustment we can
drop the higher dose and test the lower with the
usual z-test, since this gives the conditional error
function *A1 ¼ A14A1;2: This case corresponds to
the gray area above the diagonal in panel (b) of
Figures 1 and 2. In other words, dropping the
higher dose and testing directly the lower dose
(ignoring the pre-specified hierarchical order) is
possible if the interim effect of the lower dose is
smaller than the interim effect of the higher dose
because in this case we just switch from a less to a
more conservative gate-keeping test. Obviously,
the gray area in (b) of Figures 1 and 2 does not
depend on the timing n1 of the interim analysis.
Panels (a), (c) and (d) in Figures 1 and 2 illustrate
the case of sample size reassessment. As seen from
panels (a), we can decrease the sample size only for
z
ð1Þ
1 below a specific threshold (vertical edge of the
gray area). This threshold depends on the timing
and the new total sample size *n5n: Increasing the
sample size and dropping the higher dose (panels
(c) and (d)) is only possible with large interim
effects for both treatments. Note that in (c) and (d)
there is also an area where dropping the higher
dose is possible if both interim effects are promis-
ing and the higher dose has a smaller interim
effect. The reason is that for large interim effects
an increase in sample size results in *A15minðA1;
A1;2Þ; because in the new test the promising first-
stage data are down weighted. A similar phenom-
enon is observed in (a) with a decrease in sample
size and low interim effects.

3.2. Dunnett test

Performing the step-down Dunnett test, H1;2 is
rejected if maxðZ1;Z2Þ > d; where d is the Dunnett
critical boundary accounting for two treatment-
control comparisons. After a rejection, one can
test an elementary null hypothesis Hi with the
corresponding z-test at full level a: The conditional

error A1;2 for the intersection hypothesis H1;2 for
the Dunnett test is given in (2).

The gray areas in panels (e)–(h) of Figures 1 and 2
show where one can switch from the step-down
Dunnett test to the conventional z-test for the
selected dose without inflation of the multiple type
I error rate. The standardized mean of the selected
dose s (whether it is dose 1 or dose 2) is given
on the x-axis. Without sample size reassess-
ments (panels (f)) the border of the gray area is
not identical to the diagonal so that the condi-
tional error rates from the new and initial design
differ along the diagonal. There are two reasons
for this: (i) the difference between the critical
boundaries of the Dunnett and the elementary
level a z-test and (ii) the higher chance to reject
with two treatments in the Dunnett test com-
pared with the single test with the selected
treatment. The first reason (i) tends to increase
the conditional error rate for H1;2 when selecting a
single treatment (and testing also the intersection
with the smaller critical boundary z1�a). Reason
(ii) tends to decrease the conditional error rate
when selecting one treatment since we leave out
the chance to reject with the dropped treatment.
Which of the two reasons (i) and (ii) dominates the
other depends on the first-stage interim effects. If
both interim treatment effects are small and similar
in size then (i) dominates (ii) and A1;25As ¼ *As: If
both interim treatment effects are very promising
and similar in size then (ii) dominates (i) and A1;2 >
As ¼ *As:

With sample size reassessments we observe
similar tendencies as with the hierarchical
test, however, different in magnitude. When the
sample size is increased (panels (g) and (h) in
Figures 1 and 2), there is now a larger area where it
is possible to select the better treatment without
the potential of inflating the type I error rate.
There is a region in the right upper corner with
both interim effects above specific thresholds,
where an increase in the sample size of the selected
treatment is possible. Moreover, for sufficiently
large interim effects of the selected dose, an
increase in sample size is possible irrespective
of the observed interim effect of the dropped
treatment.
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4. NUMERICAL EXAMPLE

We will illustrate the issue discussed in the
previous section by a hypothetical example which
is similar in spirit to the phase II clinical trial
reported in [17]. Assume a clinical trial to
investigate the effect of two different doses of
eniporide for patients with acute ST-elevation
myocardial infarction. The trial is a prospective,
multi-center, randomized, double-blind, placebo-
controlled design with three parallel groups
(placebo, dose 1 and dose 2). The primary
endpoint is infarct size measured by the area
under the curve of the cumulative release of alpha-
hydroxybutyrate dehydrogenase (alpha-HDBH)
measured from 0 to 72 h. The initially planned
total sample size is n ¼ 400 patients per treatment
group (which is about the sample size in [17]). It is
planned to test efficacy of the two doses by the
hierarchical z-test, where we first compare dose 2
to placebo by the z-test at one-sided level a ¼
0:025 and, in case of a significant effect in the dose
2 group, also dose 1 to placebo by the z-test at
level 0:025:

Now assume that after n1 ¼ 100 patients per
treatment group an un-blinded safety analysis is
done. (In [17], the interim analysis was done at
about the same sample size.) At this point serious
(and unexpected) toxicity problems are observed
with the higher dose. Therefore, it is decided to
stop recruitment for dose 2 and to continue with
dose 1 and placebo only. Furthermore, reshuffling
of the unused sample size (300 patients) to the dose
1 and placebo group would increase power and the
chance to detect potential toxicity problems with
dose 1. Hence, the question arises whether one can
drop dose 2, recruit additionally 450 patients (i.e.
increase the total to 550 patients) for each of the
remaining treatment groups (dose 1 and placebo),
and do the usual z-test at the end of the trial
without inflating the multiple type I error rate. As
we have seen in the previous section, the answer to
this questions depends on the effects observed at
the interim safety look. To utilize Figure 1 we
express the interim effects in terms of the z-scores,
although efficacy testing is not envisaged at the
interim look. Assume that the z-score for dose 1 is

z
ð1Þ
1 ¼ 1:1 and for dose 2 is z

ð1Þ
2 ¼ 1:2: (these are

about the interim z-scores of the 100 and 150mg
groups in [17].) We can see from Figure 1(c) that
we can indeed reshuffle the unused sample size and
compare dose 1 with placebo by the usual z-test at
the end of the trial. In detail, the figure indicates
that the conditional type I error rate of the z-test
for dose 1 with the reassessed sample sizes is below
the conditional type I rate error of dose 1
and of dose 2 with the initial sample size, namely,
*A1ðz

ð1Þ
1 Þ ¼ 0:04965minðA1ðz

ð1Þ
1 Þ;A2ðz

ð1Þ
2 ÞÞ ¼ min

ð0:0518; 0:0582Þ: Hence, the desired adaptation
results in a switch from a less to a more conserva-
tive test for both hypotheses H1 andH1 \H2; thus
cannot inflate the multiple type I error rate. (Note
that acceptance of H2 at an interim look can
anyhow not inflate the type I error rates.)

5. DISCUSSION

We have reviewed the concepts for achieving fully
flexible designs which do not compromise on the
type I error rate and allow for multiple testing
without a completely pre-specified adaptation rule.
We have particularly focused on designs with a
single adaptive interim look. In the second part of
the paper, we considered the specific adaptation of
treatment selection together with sample size
reassessment. As an example we took the situation
of comparing two treatments with a common
control in a parallel group design where a
treatment may be dropped mid-trial based on
interim data and sample sizes may be reassessed
(without fixed binding rules for the treatment
selection and sample size reassessment).

Flexible designs have been criticized because, in
case of sample size reassessment, they lead to an
unequal weighting of observations from different
stages in the final test. To follow the philosophy
‘one patient one vote’, we investigated what
happens in the above many-one comparison
scenario if we use the conventional level a z-test
for the selected treatment. We considered two
strategies for the initially planned test procedure,
the hierarchical test with a priori fixed ordering of
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the hypotheses and the step-down Dunnett test. A
hierarchical ordering may be considered in the case
where the two treatments represent two different
doses of a drug.

With the hierarchical test and without a sample
size reassessment, we can always drop the lower
dose since this does not change the test for the
intersection hypothesis. We further found the
intuitive behavior that without sample size reas-
sessment we can select the lower dose if it has a
smaller interim effect than the higher dose. Such a
decision may be driven by safety problems with the
higher dose or by a high interim efficacy of the
lower dose, e.g. indicating that the lower dose is
already on the dose–response plateau. This may be
particularly useful in a phase II context. Increasing
sample sizes allows to select the lower dose even if
it has the larger interim effect in the case where
both interim treatment effects are very promising
and of similar magnitude. As expected from single
treatment comparison scenarios, increasing sample
sizes in case of moderate or small effects may,
however, inflate the multiple type I error rate.
Such an adaptation is frequently considered as
major achievement of flexible designs. For the
control of the type I error rates, we then have to
use flexible tests breaking the ‘one patient one
vote’ principle.

With the step-down Dunnett test, the situation
is more complicated. Without sample size reassess-
ment, there is no big difference in the hierarchical
test: nearly always we can select the treatment with
the smaller effect but there are exceptions; if both
interim effects are very similar in size and not
large, then we can select the treatment with the
smaller effect only if there is a certain amount of
difference to the superior dose at interim, other-
wise, we must stay with both treatments or use a
flexible test. With a decrease in sample size, the
findings are also similar to the hierarchical test; a
single treatment can be selected only if a small-to-
moderate interim effect is observed for this
treatment. With an increase in the sample size,
the treatment with the smaller effect can be
selected only if both interim treatment effects are
large. We can also select the treatment with larger
effect if its interim effect is substantial. It is

questionable if a strategy to increase the sample
size in case of large observed effects is advisable in
many situations. More general, following the ‘one
patient one vote’ philosophy and analyzing data
arising from fully flexible designs by conventional
tests are limited to types of adaptations which
seem to be rather the exception than the rule in
practice.

The fact that with the Dunnett test we cannot go
for all types of interim data with the inferior
treatment (even in the case of no sample size
reassessment) shows that arguing with a specific
selection rule can be misleading: obviously, follow-
ing the fixed rule where we always go with the
inferior treatment (and stay with the pre-planned
sample size) cannot inflate the type I error rate.
However, utilizing full flexibility, we have the
options to sometimes select the inferior and
sometimes to go with both treatments. Switching
to the (slightly) inferior treatment in the case of
two similar but small effects and staying with the
initial two treatments otherwise will inflate the
multiple type I error rate. The reason is that we
switch only in cases where the chance to reject with
one treatment is higher (due to the smaller critical
boundary) than to reject with both treatments.
This once more shows the fundamental difference
between flexibility and pre-specified adaptivity.
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