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Summary

Traditional drug development consists of a sequence of independent trials organized in different phases.
Full development typically involves (i) a learning phase II trial and (ii) one or two confirmatory phase
III trial(s). For example, in the phase II trials several doses of the new compound might be compared
to a control and/or placebo with the goal of deciding whether to stop or continue development and, in
the latter case, selecting one or two “best” doses to carry forward into the confirmatory phase. The
phase III trials are then conducted as stand-alone confirmatory studies, not incorporating in their statis-
tical analyses data collected in the previous phases.

Seamless phase II/III designs are aimed at interweaving the two phases of full development by com-
bining them into one single, uninterrupted study conducted in two stages. In the dose-finding example
above, one (or more) dose(s) are selected after the first stage based on the available data at interim, and
are then observed further in the second stage. The final analysis of the selected dose(s) includes pa-
tients from both stages and is performed such that the overall type I error rate is controlled at a pre-
specified level regardless of the dose selection rule used at interim. The adequacy of the dose selection
at interim is obviously a critical step for the success of a seamless phase II/III trial. In this paper we
focus on the description of flexible test procedures allowing for adaptively selecting hypotheses at
interim and thus allowing the combination of learning and confirming in a single seamless trial. We
review the statistical background, introduce different test procedures and compare them in a power
study. In a subsequent paper (Schmidli et al., 2006) we give several applications from our daily prac-
tice and discuss related implementation issues in conducting adaptive seamless designs.

Key words: Adaptive seamless design; Adaptive tests; Closure principle; Combination tests;
Multiple testing; Hypotheses selection.

1 Introduction

The development of biopharmaceutical products is becoming increasingly challenging, inefficient and
costly. In March 2004 the US Food and Drug Administration (FDA) released a white paper entitled
“Stagnation/Innovation: Challenge and Opportunity on the Critical Path to New Medical Products”
(Anonymous, 2004). The document acknowledges that today’s revolution in biomedical science has
raised new hope for the treatment of many diseases, but points out that the number of new drug and
biologic applications submitted to the FDA has declined considerably in the last decade and discusses
several potential causes for this decline. The white paper concludes that if the drug development
processes do not become more efficient and effective, innovation may continue to stagnate and the
biomedical revolution may fail to achieve its full potential.
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There are many ways that statistics and biometrics in general can contribute to improve the drug
development cycle. The FDA document does not directly mention the role statisticians could play in
this process. However, O’Neill (2004) recently reported on feedback the FDA received from stake-
holders in the pharmaceutical industry and academia regarding its Critical Path initiative. He in parti-
cular proposed adaptive designs as one innovative statistical approach worth to be investigated.

Classical drug development consists of a sequence of independent trials in different phases. In a
typical phase II trial one would compare several treatments (for example, different dose levels of a
new compound) with a control. After the completion of this trial it is then decided whether to con-
tinue the drug development and which treatment(s) to carry forward to the phase III. The phase III
trials are then evaluated as stand-alone confirmatory trials, ignoring information from previous phases.

Seamless phase II/III designs aim at interweaving these trials by combining them into one single
study conducted in two stages. In the example above, one (or more) treatment(s) are selected after the
first stage based on the available data at interim, and observed further in the second stage. The final
analysis of the selected treatment includes the patients of both stages and is performed such that the
overall type I error rate is controlled at pre-specified level regardless of the adaptation rule used at
interim. Such flexibility particularly allows the use of Bayesian decision tools for interim adaptation
without affecting the frequentist significance level. Flexibility is of upmost importance for efficient and
ethical conduct of clinical trials with a continuous monitoring of efficacy and safety. Ideally, adaptive
seamless designs (ASD) thus ðiÞ reduce the time to decide on, plan and implement the next clinical
phase (reduction of the “white space” between the two studies), ðiiÞ save costs through the combination
of evidences across two studies and thus the need for fewer patients (or, equivalently, increase the
information value and the reliability of decision making while maintaining the same sample sizes), and
ðiiiÞ get long-term safety data earlier as a direct consequence of following-up the phase II patients.

This paper discusses some statistical aspects related to the design and analysis of ASD. Based on our
experience from real applications we introduce several innovative designs and point to relevant methodo-
logical problems. We review adaptive designs and closed test procedures and describe how these con-
cepts can be combined for adaptive choices of hypotheses at an interim stage. We also investigate alter-
native strategies which are based on well known one-stage multiple test procedures. In a subsequent
paper (Schmidli et al., 2006) we introduce applications of innovative adaptive and seamless designs for
different experimental questions and also discuss related practical implementation issues.

This paper serves as an introduction to the general concepts of ASD and addresses any interested
statistician, including those who have never conducted such a study so far. The subsequent paper is
devoted to a broader audience, including clinicians, project management, and related personnel, who
are faced with practical planning issues and implementation problems inherent to ASD.

2 Principles of Adaptive Designs

For simplicity, we assume in this section that a single directional (i.e., one-sided) null hypothesis H is
tested against the alternative K in a two-stage design, i.e., with one single interim analysis. Based on
the first-stage data (the unblinded data collected up to interim) it is decided whether to continue the
study (conducting the second stage) or not (early stopping: either due to futility or due to early rejec-
tion of H). In the case that one continues with the second stage, the final analysis at the end of the
study combines the results of both stages.

Let pi denote the p-values for stage i ¼ 1; 2. The adaptive test procedure, as proposed by Bauer and
K�hne (1994), is specified as follows:

1. Define a test procedure for stage 1, determine the stopping rules for the interim decision and
pre-specify the combination function C of p1 and p2 for the final analysis.

2. Conduct stage 1 of the study, resulting in p1.
3. Based on p1, decide whether to stop at interim (either rejecting or retaining H) or to continue

the study.
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4. If the study is continued, use all information (also external to the study, if available) to design
the second stage, for example, re-assess the second stage sample size.

5. Conduct stage 2 of the study, resulting in p2 being independent from p1 under H.
6. Combine p1 and p2 using C ¼ Cðp1; p2Þ and decide for or against H by comparing C with an

appropriate critical value.

Note that adaptive designs offer a high level of flexibility during the conduct of the trial. They require
the least amount of pre-specified decision rules prior to the study among multistage designs so that
the total information available at interim can be used in designing the second stage.

To make the ideas concrete, assume that Fisher’s combination test is used, i.e., H is rejected at the
final stage if (Bauer and K�hne, 1994)

Cðp1; p2Þ ¼ p1p2 � c ¼ exp ð�c2
4;1�a=2Þ ;

where c2
n;1�a is the ð1� aÞ-quantile of the c2-distribution with n degrees of freedom. Consider the

early stopping boundaries a0 and a1, such that (i) if p1 � a1 the trial stops after the interim analysis
with an early rejection of H, (ii) if p1 � a0 the trial stops after the interim analysis for futility (H is
not rejected). Note that if a0 ¼ 1 no stopping for futility is foreseen and if a1 ¼ 0 no early rejection
of H is possible. In order to maintain the type I error rate at pre-specified level a simultaneously
across both stages, a1 is computed by solving a1 þ cðln a0 � ln a1Þ ¼ a for given a and a0. The flow
chart in Figure 1 depicts the associated decision process.

Note that other combination functions than Fisher’s product test can be used, see among others
Proschan and Hunsberger (1995) and Cui, Hung and Wang (1999). A common choice is the weighted
inverse normal method (Lehmacher and Wassmer, 1999)

Cðp1; p2Þ ¼ 1�F½w1F�1ð1� p1Þ þ w2F�1ð1� p2Þ� ;
where 0 < wi < 1; i ¼ 1; 2, are arbitrary weights subject to w2

1 þ w2
2 ¼ 1 and F denotes the standard

normal cdf. If the weights wi; i ¼ 1; 2; are properly chosen, this combination function corresponds to
the classical two-stage group sequential test, i.e., the squared weights are proportional to the sample
size or information fractions at both stages assuming that no adaptation is done.

An alternative approach to the use of combination functions is to consider conditional error func-
tions (CEF; Proschan and Hunsberger, 1995)

Aðp1Þ ¼ PHðreject H j p1Þ ¼
1 if p1 � a1

0 if p1 � a0

maxfp2 j Cðp1; p2Þ � cg if p1 2 ða1; a0Þ :

8<
:
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Figure 1 Two-stage adaptive design to test a single null hypoth-
esis H.
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The CEF is the probability of rejecting H in the final analysis given the first-stage p-value p1, i.e., H is
rejected if p2 < Aðp1Þ. For Fisher’s product combination test, the CEF is given by c=p1. Note that any
adaptive procedure based on combination functions can be written in terms of a CEF. The CEF principle
can also be applied to any test statistics used for the first stage and foreseen for the second. We refer to
Brannath, Posch, and Bauer (2002) and Posch and Bauer (2003) for further details on adaptive designs.

3 The Closure Principle

In this section we review the closure principle (CP; Marcus et al., 1976), which is an important multi-
ple testing concept and which will be used extensively in the subsequent sections. We do not consider
adaptive testing in this section.

Assume that n directional null hypotheses Hi; i ¼ 1; . . . ; n, are to be tested (for example, the com-
parison of n treatments with a control). In multiple testing situations the goal is to control strongly the
familywise error rate (FWER) at pre-specified level a, where the strong FWER control is defined as
the probability of rejecting at least one true null hypothesis irrespective of the configuration of null
hypotheses. The CP considers all intersection hypotheses constructed from the initial hypotheses set.
A null hypothesis Hi is rejected at FWER a, if all hypotheses implying Hi are rejected. More for-
mally, the CP is defined as follows:

1. Define a set of elementary hypotheses H1; . . . ;Hn of interest.
2. Construct all possible m � n intersection hypotheses HI ¼

T
i2I

Hi; I � f1; . . . ; ng.

3. For each of the m hypotheses find a suitable local level-a test.
4. Reject Hi at FWER a, if all hypotheses HI with i 2 I are rejected, each at (local) level a.

Note that the choice of the tests for the m hypotheses is free and that different tests can be used for differ-
ent hypotheses. This is a crucial property for the adaptive hypotheses tests in the subsequent sections.

Consider Figure 2 for an example of the CP with n ¼ 2 (assuming, for example, that two treatments
are compared with a control, thus resulting in two primary hypotheses of interest). In this situation
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Figure 2 Closure principle for
two null hypotheses H1 and H2.

Figure 3 Closure principle for three null
hypotheses H1;H2; and H3.
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there is only one non-trivial intersection hypothesis H12 ¼ H1 \ H2, so that the set H ¼ fH1;H2;H12g
is closed under intersection with m ¼ jHj ¼ 3. According to the CP one rejects H1 (at FWER a) if
both H1 and H12 are rejected, each at (local) level a. Conversely, one rejects H2 if both H2 and H12

are rejected.
Consider Figure 3 for an example of the CP with n ¼ 3. In this situation, four additional intersec-

tion hypotheses have to be considered to obtain a closed hypotheses set with m ¼ 7. Now, H1 (say) is
rejected, if H123;H12;H13 and H1 are all rejected at level a, where Hij ¼ Hi \ Hj; 1 � i; j � 3 and
H123 ¼ H1 \ H2 \ H3 is the global intersection hypothesis.

4 Multiple Testing in Adaptive Designs

In this section we show how to test adaptively multiple hypotheses by combining the techniques from
the previous two sections. The following results are rather general and allow a very flexible adaptation
of hypotheses at interim, as illustrated later in Section 5 and in Schmidli et al. (2006).

Assume that we are now interested in testing n hypotheses H1; . . . ;Hn using a two-stage design.
The general rule is to apply the CP by constructing all intersection hypotheses and to test each of
them with a suitable combination test (Hommel, 1997, 2001; Bauer and Kieser, 1999; Kieser et al.,
1999). Following the CP, a null hypothesis Hi is rejected if all hypotheses implying Hi are also
rejected. In the sequence we call this general principle “adaptive combination test” or simply the
“Hommel procedure”.

Consider Figure 4 for an example of testing adaptively n ¼ 2 hypotheses. As before, let H1; H2;
and H12 denote the hypotheses to be tested according to the CP. Let further pi; j denote the one-sided
p-value for hypothesis Hj; j 2 f1; 2; 12g at stage i ¼ 1; 2. Finally, let Cðp1;j; p2;jÞ; j 2 f1; 2; 12g; de-
note the combination function C applied to the p-values pi;j from stage i ¼ 1; 2. Note that different
combination functions as well as different stopping boundaries could be used within the closed hy-
potheses set (for simplicity we omit this generalization here). According to the CP, H1 (say) is re-
jected at FWER a, if H1 and H12 are both rejected at level a, i.e., if Cðp1;1; p2;1Þ � c and
Cðp1;12; p2;12Þ � c.

The rejection rule can also be expressed in terms of CEF. Following this alternative approach, H1 is
rejected if p2;1 � Aðp1;1Þ and p2;12 � Aðp1;12Þ. Note that the rejection rules are simplified if early rejec-
tion or non-rejection of any hypothesis is achieved at interim. If, for example, p1;12 � a1, then
Aðp1;12Þ ¼ 1, so that the condition p2;12 � Aðp1;12Þ ¼ 1 is always satisfied. Consequently, H1 is re-
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Figure 4 Closure principle for testing adaptively n ¼ 2
null hypotheses H1 and H2.
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jected if p2;1 � Aðp1;1Þ as long as p1;12 � a1. Similarly, if p1;12 � a0, then Aðp1;12Þ ¼ 0 and H1 cannot
be rejected at the FWER a, meaning that the study can be stopped for futility at interim. Even if one
decided to continue the study, H1 would never be rejected whichever the results at the second stage
were. Note that in this particular case H2 can not be rejected either. Finally, if p1;1; p1;12 � a1, H1 is
already rejected at interim (no need to continue testing H1). Kieser et al. (1999) gave a flow chart to
depict the complete decision process for n ¼ 2 hypotheses.

Note that alternative test strategies are available, some of which are described in Section 6 and
compared with the Hommel procedure.

5 Generic Examples

In this section we consider two generic examples of adaptively modifying multiple hypotheses after an
interim analysis. The first example illustrates the selection of a treatment at interim, similar to the
example described in Section 1. The second example considers a treatment switch at interim. Further
generic examples and applications are described in Schmidli et al. (2006) and Posch and Bauer
(2003).

5.1 Treatment selection

Assume that we have two treatments to be compared with a control. At interim we decide which of
the two treatments to carry forward into the second stage. The final analysis of the selected treatment
includes the patients of both stages by applying the results of the previous sections. Assume that one
decides at interim to continue with treatment 1 and let H1 be the related null hypothesis. No data is
therefore available for treatment 2 after the second stage. Consequently, the intersection hypothesis
H12 for the second stage is equal to H1 and its test is performed using only the test of H1. Figure 5
depicts the CP associated with the two null hypotheses H1 and H2 together with the related stagewise
p-values as well as the resulting combination of both stages in terms of CEF.

From the CP it follows that we have to reject H1 and H12 to be able to declare treatment 1 as
significantly different from the control. From Figure 5 it is clear that we thus require p2;1 < Aðp1;1Þ
and p2;1 < Aðp1;12Þ. Equivalently, H1 is rejected at FWER a if p2;1 < min fAðp1;1Þ; Aðp1;12Þg. Note
that the approach above also applies to other adaptive selection problems involving two hypotheses,
such as subgroup or endpoint selection, for example.
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Figure 5 Closure principle for treatment selection at in-
terim.
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5.2 Treatment switch

Assume that a study is planned to investigate the behavior of a single treatment (1, say) in comparison
with a control. Assume further that at interim safety problems are detected and it is decided to discon-
tinue the present treatment arm. Instead, it is decided to continue the study with a new treatment (2,
say, which could be a lower dose of treatment 1, for example) being investigated at the second stage.
Figure 6 depicts the CP associated with the two null hypotheses H1 and H2 being tested in the course
of the study.

Since at stage 1 no data is available for treatment 2, and vice versa at stage 2 no data is available
for treatment 1, the related stagewise p-values for the intersection hypothesis H12 are just the corre-
sponding p-values from the elementary hypotheses H1 and H2. As concluded from Figure 6, H2 is
rejected if p2;2 < min fAðp1;1Þ; ag, i.e., if the second stage p-value p2; 2 associated with treatment 2 is
less than a and less than the CEF resulting from the first stage p-value p1;1 associated with treatment
1. In practice, the latter condition is not severe, since in most cases of practical relevance the CEF
will be larger than a.

Note also that in practice the treatment switch example will probably never be applied as described
here. One would rather stop the entire study after interim and start a second (seemingly independent)
study investigating treatment 2 at full level a. The above considerations are not only instructive for
illustrating ASD, but they also put the current statistical practice into a new perspective.

6 Power Study for Treatment Selection

The power is one of the key operation characteristics needed for designing a clinical trial. We consid-
er in this section the evaluation of power for a two-stage ASD with treatment selection at interim. We
compare the power of adaptive combination tests described in the previous sections with those of
standard one-stage tests. We restrict the investigation to the comparison of n ¼ 2 and n ¼ 3 treatments
with a control in the homoscedastic normal model with known variance s2 ¼ 1. The sample size s per
group is fixed so that the single treatment control comparison for one dose provides a power of
1� b ¼ 0:80 for a one-sided z-test with a ¼ 0:025 at a particular alternative dA ¼ 1, so that
s ¼ 2ðz1�a þ z1�bÞ2=d2

A, where zg is the g-quantile of the standard normal distribution. One mid-trial
interim analysis is considered after s

2 observations per treatment group and no early stopping of the
study is foreseen. The power values are computed by simulating 100 000 trials.
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Figure 6 Closure principle for a treatment switch at interim.
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We compute the probability to reject correctly at least one of the hypotheses under investigation at
the final analysis (so-called minimum power, see Westfall et al., 1999, for a discussion of different
power concepts in multiple testing situations). Figure 7 shows the results for comparing n ¼ 2 treat-
ments to control and Figure 8 for comparing n ¼ 3 treatments to control. We consider the two cases
that at interim it is decided (I) to continue with all treatments in the second stage (left column in
Figures 7 and 8) and (II) to select the best treatment based on the observed first stage mean value
(right columns). The following test procedures are investigated:

(A) Adaptive Dunnett Adaptive combination test using the many-to-one test of Dunnett (1955) for
the intersection hypotheses at each stage and combining the stagewise p-values using the in-
verse normal method with equal weights (solid line in Figure 7 and 8). Note that the Dunnett
test reduces to the t-test if only one treatment is selected.

(B) Adaptive Hierarchical Adaptive combination test using the many-to-one test of Dunnett for the
first stage intersection hypothesis. Based on the interim data, the most promising treatment
with the largest mean is selected and a fixed sequence test procedure (Westfall and Krishen,
2001) starting with the selected treatment is applied for the second stage intersection hypoth-
esis. The Dunnett test at interim is also to provide the p-value for the intersection hypothesis,
irrespective of whether one continues with both treatments. If it is decided to continue only
with one treatment in the second stage, this procedure is the same as procedure (A). The
inverse normal method with equal weights is used for combining the stagewise p-values (dotted
line).
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Figure 7 Two active treatments: Power for different tests when continuing with all treatments (left
column) or selecting the best treatment at interim (right column). Detailed information about the tests
and parameter configuration are given in the text.
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(C) Single Stage Dunnett Irrespective of whether the second stage is conducted with one or both
treatments, the final analysis uses the multiplicity adjustment according to Dunnett (1955)
(dotted-dashed line).

(D) Single Stage Bonferroni Irrespective of whether the second stage is conducted with one or both
treatments, the final analysis uses the Bonferroni adjustment, that is, the resulting test statistics
are compared with the standard normal ð1� a=2Þ-quantile. This test is uniformly less powerful
than procedure (C) and is included for reference purposes only (dashed line).

Let mj denote the mean of treatment group j ¼ 0; 1; 2ð; 3Þ, where j ¼ 0 denotes the control group.
In Figures 7 and 8, each row shows the power values for two different efficacy patterns (i)
fm0; m1; m2ð; m3Þg ¼ f0; d; 0ð; 0Þg (first row in Figures 7 and 8) and (ii) fm0; m1; m2ð; m3Þg ¼
f0; d; 1ð; 1Þg (second row) where d 2 ½0; 1:5� is plotted on the abscissa.

When selecting all treatments for the second stage, procedure (A) has less power than the compet-
ing methods (case I, left column), especially than both single stage procedures. This behavior is even
more pronounced in the situation of comparing n ¼ 3 treatments to control (see Figures 7 and 8, left
upper panel). For the efficacy pattern (i), where all other active treatments are ineffective
(m2ð¼ m3Þ ¼ 0) procedure (B) outperforms (A) by constantly more than 5% power for n ¼ 2 (resp. 8–
9% for n ¼ 3) over a wide range of d. For the efficacy pattern (ii), where m2ð¼ m3Þ ¼ 1, the addi-
tional Dunnett test at the second stage in procedure (A) uses the information of all treatments being
effective for large values of d. Consequently, procedure (B) is only more powerful for small values of
d. In case (II) of selecting one treatment at interim the single-stage tests pay too high a price for
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Figure 8 Three active treatments: Power for different tests when continuing with all treatments (left
column) or selecting the best treatment at interim (right column). Detailed information about the tests
and parameter configuration are given in the text.
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multiplicity and thus perform inferior to the adaptive combination tests. As expected, the Bonferroni
test is always less powerful than the Dunnett test. As mentioned before, procedures (A) and (B) are
identical in this situation and the two curves are lying upon each other in the right panels of Figures 7
and 8.

For the adaptive procedures (A) and (B) a sample size reassessment can be performed in the inter-
im analysis in contrast to the single stage procedures of (C) and (D). Here we investigated a simple
sample size reallocation strategy for case (II) by fixing the total sample size of the trial over all
treatment groups. For sample size reallocation we distribute the unused number of observations of the
dropped treatments evenly over the selected treatments (including the control group). This test proce-
dure is denoted by (E) Adaptive Dunnett with reallocation in Figures 7 and 8 (dotted-dotted-dashed
line). Again, if it is decided to continue only with one treatment in the second stage, the adaptive
procedures of (A) and (B) with sample size reallocation are equal. Note that the power of procedure
(E) is substantially increased for all efficacy scenarios considered in comparison with the methods
without sample size reallocation. Clearly, a higher increase of power is achieved for the comparison of
n ¼ 3 treatments to control in contrast to n ¼ 2, since more observations can be reallocated. For
example, the power for the effect from the planning dd ¼ 1 is increased from 68% to 82% for n ¼ 3
and efficacy pattern (i).

In practice the decision whether to continue with one, two, . . ., or all treatments is mostly taken at
interim and thus unknown in the design phase of an adaptive seamless study. The true power curves
will thus lie between those presented in the left and the right columns of Figure 7 ðn ¼ 2Þ and Figure
8 ðn ¼ 3Þ, respectively.

7 An Approximate Sample Size Comparison

When planning an adaptive design, e.g., for treatment selection, it would be helpful to have a simple
rule of thumb for the sample size calculation. In particular we want to derive an approximate relative
efficiency of an ASD as compared to a classical independent phase II/III program. Since using single
stage tests has similar operation characteristics compared with adaptive designs using a combination
function (see Section 6), it can be used as a first approximation for the power and sample size calcula-
tions. We consider the case where exactly one active treatment is selected at interim. Let sij denote the
planned sample size for treatment j ¼ 0; 1; . . . ; n at stage i ¼ 1; 2. Let sða; bÞ ¼ 2ðz1�a þ z1�bÞ2=D2

denote the sample size that provides for a particular design a power of 1� b to detect a standardized
treatment difference D with a level-a test in a two-arm comparison. Assume further that in stage 1 the
sample sizes per arm s1j are chosen to be sða; b1Þ. The aim of this stage (or, equivalently, of a sepa-
rate phase II study) is primarily to select the right dose(s) to be investigated in the second stage (or,
equivalently, an independent phase III study).

In order to achieve a power 1� b2 for the confirmatory part in a classical design, the neces-
sary sample size is given by sða; b2Þ. The total sample size across both stages and all treatment
arms is then sclass ¼ ðnþ 1Þ sða; b1Þ þ 2sða; b2Þ. For an ASD we assume that the information of
both stages is combined using a single stage test at the end of the second stage. In order to obtain
a conservative sample size estimate we use a Bonferroni correction to account for the inherent
multiplicity. The total sample size across both stages for the control group and the continued
treatment arm is given by sða=n;b2Þ. The total sample size for an ASD is then approximated by
sASD ¼ ðn� 1Þ sða; b1Þ þ 2sða=n; b2Þ.

If we further assume b1 ¼ b2 ¼ b and asymptotically normal distributed tests we obtain with
sða; bÞ ¼ 2ðz1�a þ z1�bÞ2=D2 the relative efficiency

r ¼ sASD

sclass
¼

n� 1þ 2
z1�a=n þ z1�b

z1�a þ z1�b

� �2

nþ 3
:
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Note that this formula overestimates the true ratio of required sample sizes since (i) in reality more
powerful multiple comparison procedures than the Bonferroni procedure may be used, (ii) the above
derivation implicitly assumes that the treatment selection at interim is done independent of the ob-
served effect sizes at interim (e.g., via a random selection or pre-determining the selected treatment),
whereas in practice a “good” treatment would rather be selected, and (iii) if in fact only one treatment
is selected for the second stage then a combination function approach will have an even higher power
than the single-stage approach considered here. Figure 9 shows the relative efficiencies for several
values of n with a ¼ 0:025 and b ¼ 0:1, indicating that the classical independent phase II/III designs
are particularly inefficient when the number n of hypotheses is small.

8 Conclusions

The statistical methodology for adaptive designs developed in the last 15 years allows sufficient flex-
ibility to be applied to the two-stage seamless phase II/III studies discussed here. Extensions to more
than two stages are also possible, using the same concept of combining p-values over the different
stages. More recently, methods controlling the type I error were developed which do not even require
the number of interim analyses to be pre-specified (M�ller and Sch�fer, 2001). For the confirmatory
trial we have in mind here, some of this flexibility may not be made use of. A study where the design
is changed at any time during the course of a trial is probably neither convincing to health authorities
nor to the medical community – except perhaps in rare cases of revolutionary drugs in indications
with great unmet medical need. For adaptive seamless phase II/III studies, more modest adaptations
are appropriate such as dose selection, treatment regimen selection (e.g., once daily vs twice daily),
selection of a pre-specified subgroup (e.g., restriction of inclusion criteria at interim to patients with
severe disease), adaptation of the sample size, and selection of the testing strategy for the second
stage. It is likely that statistical methods can be developed for this more narrow range of adaptations
that are even more efficient than those currently available.
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