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ABSTRACT

Motivation: Two-stage pilot and integrated designs are powerful

tools for investigating large numbers of hypotheses. Asymptotically,

optimal two-stage designs controlling the familywise error or false

discovery rate are considered when costs and effect sizes per

measurement differ between stages and total costs are constrained.

Results: Depending on the cost and effect size ratios between the

measurements, it is generally more powerful to apply two-stage

procedures using one measurement method at both stages. For the

practically relevant case that the same method is applied at both

stages but designing the second-stage measurements raises extra

costs, two-stage designs are more powerful than the single-stage

design even for large costs ratios. The power of the optimal pilot

and integrated two-stage designs generally are similar, however, the

integrated approach is less sensitive even to severe design

misspecifications in the planning phase.

Availability: R-programs (R, 2005) to calculate asymptotically

optimal designs are available on: http://statistics.msi.meduniwien.

ac.at/index.php?page¼ao2stage

Contact: alexandra.goll@meduniwien.ac.at

1 INTRODUCTION

In gene expression and proteomic studies, we generally deal with

large numbers of hypotheses, where only for a small fraction of

the hypotheses noticeable effects exist. Due to limited resources,

the number of observations per hypotheses in a conventional

single-stage design is low which limits the power. It has been

shown that two-stage (or multi-stage) designs are a good option

to improve the power. In these sequential designs, early stages

are used to screen for the promising hypotheses, which are

further investigated in later stages. For example, Zehetmayer

et al. (2005) proposed (optimal) two-stage designs for experi-

ments with a large number of hypotheses and constraints on the

total sample size which control the false discovery rate (FDR,

see Benjamini and Hochberg, 1995). All hypotheses whose

conventional univariate first-stage P-values fall below a certain

common threshold are selected for the second stage. The final

test decision is based on the observations pooled over both

stages (‘integrated design’), see also Bukszar and Van den Oord

(2006), Satagopan and Elston (2003), Satagopan et al. (2002),

Satagopan et al. (2004), Van den Oord and Sullivan (2003),

Zehetmayer et al. (2005) also investigated optimal ‘pilot

designs’, where the final test is only based on the second-stage

data. Further comparisons between the pilot and the integrated

design can also be seen in Skol et al. 2006. In all these proposals,

constant costs and effect sizes over stages have been assumed.
In the following, we investigate two-stage designs using a less

accurate assay in early stages and more accurate ones in later

stages for cost reasons (see also Wang et al., 2006). For

example, a quasi-quantitative, global LC-MS profiling proteo-

mics experiment may underestimate the true effect size due to

saturation or sensitivity effects inherent in these multiplexed

assays, whereas a targeted, calibrated assay (e.g. ELISA) can

show an effect size generally larger than the profiling study.

First, we consider such a scenario that the experimenter from

the beginning may have the choice between two methods that

differ in costs and effect sizes. In the second scenario, different

costs per measurement may arise if the same method is applied

at both stages but specific experimental devices have to be

produced at higher costs per measurement for the selected

markers at the second stage. In contrast to Wang et al. (2006)

who constructed designs minimizing the overall costs for a given

FWE rate and power, we assume that the total costs of the

experiment are fixed, similar to Satagopan et al. (2002),

Zehetmayer et al. (2005) or Ohashi and Clark, (2005). For

limited total costs, we derive both integrated and pilot designs

with an asymptotically optimal power (for an increasing number

of null hypotheses), either controlling the FWE rate or the FDR.

The test problem is defined in Section 2 and the corresponding

single-stage procedures in Section 3. In Sections 4 and 5, we

define the asymptotically optimal pilot and integrated design.

In Section 6, we show for the first scenario that depending on

the cost and the effect ratios between the methods it is preferable

either to apply the low-cost or the high-cost method on both

stages. The second scenario is investigated in Section 7

calculating cost ratios between stages for which it is worthwhile

to use (optimal) two-stage designs. We further look how design

misspecifications in the planning phase would change the power

of two-stage designs as compared to the standard single-stage

design. A short discussion including some results under less

stringent distributional assumptions is given in Section 8.

2 TEST PROBLEM

Consider m1 (null) hypotheses for the mean of independent

normally distributed observations with known variance:

H0i : �i ¼ 0 against H1i : �i > 0, i ¼ 1, :::,m1.
For deriving the test procedures, we assume independence of

observations across hypotheses.*To whom correspondence should be addressed.
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3 THE SINGLE-STAGE DESIGN

We assume that there is a limit on the overall total costs C of

the study. Without loss of generality, the costs per observation

of the single-stage design are set to 1. In the standard

single-stage design, we equally allocate n ¼ C=m1 observations

to each of the m1 hypotheses. The test statistics used

for decisions are the P-values pi ¼ 1��ðziÞ, i ¼ 1, . . . ,m1,

where zi is the standardized mean of the sample taken to test

H0i and � is the distribution function of the standard

normal distribution. The P-values are compared to a

common critical boundary �: If pi < � the null hypothesis

H0i is rejected, otherwise it is accepted. We further

assume that for a fraction �0 of the m1 hypotheses

considered the null hypothesis is true. To simplify later

calculations, we also assume that the same mean �i ¼ ��
holds true for all the alternatives, where �2 is the common

known variance.
To control the FWE rate (the probability to reject at least

one true null hypothesis irrespective of how many and which

are in fact true), we apply the critical Bonferroni boundary

� ¼ �=m1. The power of such a single-stage design is defined

by
Q

s ¼ 1� �ð�Þ ¼ 1�� ffiffiffiffiffiffiffiffiffiffi
ðC=m1

p
Þ�, 1
ðc1��Þ, where �ð�Þ denotes

the type 2 error as a function of the rejection boundary �, ��, �2

is the distribution function of the normal distribution with

mean � and variance �2 and c1�� is the ð1� �Þ-quantile of the

standard normal distribution. Note that under the assumption

of a common alternative, the power is the expected fraction of

null hypotheses correctly rejected.

To control the FDR (the expected proportion of erroneous

rejections among all rejections), we apply the method of Storey,

(2002) estimating the FDR. The critical value � is determined as

the maximal � such that

�̂0�m1

maxð]fpi < �g, 1Þ
� �: ð1Þ

Here, �̂0 is the estimated proportion of true null hypotheses

given by

�̂0 ¼ ]fpi > �g=fð1� �Þm1g, ð2Þ

where �, 0 < � < 1, is a constant chosen a priori and ]fpi > �g
denotes the number of P-values exceeding �. Hence, the critical

boundary is determined from the sample such that the

estimated FDR never exceeds the targeted value �. Using the

method of Storey the critical boundary is a random variable.

Asymptotically, for large m1, � can be determined from the

equation

� ¼
�0�

�0� þ ð1� �0Þð1� �ð�ÞÞ

and plugged into the formula for
Q

s to approximate the real

power.

4 THE PILOT DESIGN

4.1 The test procedure

We consider the same test problem as described in Section 2.

Again, we assume there is a limit of overall total costs C for

the study. Now, a fraction r of the total costs C is used for the

first stage for testing the m1 hypotheses. Thus, for balanced

sample size allocation the sample size of the first stage per

hypothesis is n1 ¼ rC=m1. The first-stage P-values are given by

p
ð1Þ
i ¼ 1��ðz

ð1Þ
i Þ where z

ð1Þ
i is the first-stage mean of the

observations for hypothesis H0i, i ¼ 1, . . . ,m1, standardized

by using the common known first-stage SD �1. All null

hypotheses are selected, whose P-values fall below a threshold

�1 ðp
ð1Þ
i < �1Þ. All others are accepted. Hence, a random number

of m2 hypotheses are selected for the second stage. Assume the

sampling costs vary between the two stages due to applying a

high-cost method in the second stage, so that the total costs are

m1n1 þm2n2c2 ¼ C for some constant c2 � 1. The remaining

costs ð1� rÞC are equally allocated over the selected null

hypotheses so that the second-stage sample size n2 is given by

n2 ¼ ðC�m1n1Þ=ðm2c2Þ ¼ ðð1� rÞCÞ=ðm2c2Þ. Let zð2Þi denote

the mean of the second-stage sample for hypothesis H0i, now

standardized by using the common known second-stage SD �2.
Consequently, p

ð2Þ
i ¼ 1��ðz

ð2Þ
i Þ denotes the second-stage

P-value for the selected null hypothesis H0i. Remember that

in the pilot design the P-value used for decisions after the

second stage is only calculated from the second-stage sample.

A selected hypothesis H0i is rejected if the second-stage

P-value falls below the boundary �2 ðp
ð2Þ
i < �2Þ. Otherwise it

is accepted.

4.2 Optimal designs controlling the FWE rate

To control the FWE rate, we simply apply the Bonferroni

method to determine the rejection boundary for the second-

stage P-value p
ð2Þ
i , but in contrast to the single-stage design,

the adjustment refers to the number of selected hypotheses

m2: �2 ¼ �=m2: Since m2 is independent of the second-

stage data, this procedure clearly controls the FWE rate

at the level �.
We now will try to determine a �1 and r which maximizes

the power of the two-stage design controlling the FWE rate.

We assume that at stage 1 for all alternative hypotheses

the same mean �1i ¼ ��1 and at stage 2 the same mean

�2i ¼ k��2, k � 1, holds true, respectively. Here, k is the ratio

of the effect sizes between the two stages, and we assume that

the high-cost method at the second stage never provides a

smaller effect size than the low-cost method at stage one.

The first-stage power (the probability of being selected) for

a true alternative is given by

1� �1ð�1Þ ¼ P�1i¼��1 ðp
ð1Þ
i < �1Þ ¼ 1�� ffiffiffiffi

n1
p

�, 1ðc1��1 Þ:

Note that under the assumption of a common alternative,

this is the expected proportion of correctly selected null

hypotheses among all null hypotheses for which the alternative

holds.

For the second stage we select m2 hypotheses which, for large

m1, is given by

m2 ¼ m1ð1� �0Þð1� �1ð�1ÞÞ þm1�0�1:

Because of the independence between the two stages, the

overall power of the pilot design, i.e. the expected fraction of

null hypotheses correctly rejected after the second stage,
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is asymptotically given byY
p
¼ ð1� �1ð�1ÞÞð1� �2ð�2ÞÞ

¼ 1�� ffiffiffiffi
rC
m1

p
�, 1
ðc1��1 Þ

� �
1�� ffiffiffiffiffiffiffiffi

ð1�rÞC
m2c2

p
�k, 1
ðc1� �

m2
Þ

� � : ð3Þ

Given an FWE rate �, an initial number of hypotheses m1,
overall costs C, the cost ratio c2 between stages, the proportion

of true null hypotheses �0, the effect size � and the effect size
ratio k between stages we can optimize

Q
p in the two design

parameters r and �1. Considering r as a continuous variable, the
optimal sample sizes per stage (n1 and n2) in general will be non-
integer. It is easy to see that the optimal �1 and r depend on C,
m1, � and k via

ffiffiffiffiffi
C
m1

q
� and k=

ffiffiffiffiffi
c2
p

.

4.3 Optimal designs controlling the FDR

To control the FDR, the second-stage critical boundary �2 is

determined as in formulas 1 and 2 replacing m1 by m2.
Asymptotically, for large m1, the first-stage selection boundary
�1 and the second-stage rejection boundary �2 in the pilot
design have to adhere to the equation

� ¼
�0�2�1

�0�2�1 þ ð1� �0Þð1� �1ð�1ÞÞð1� �2ð�2ÞÞ
ð4Þ

where, ð1� �1ð�1ÞÞð1� �2ð�2ÞÞ is the power
Q

p of the pilot

design defined in (3) using �2 instead of �=m2. Again
Q

p can be
optimized as function of r and �1, where �2 follows from
condition (4).

5 THE INTEGRATED DESIGN

5.1 The test procedure

We address the same test problem as in Section 2. Also, the
screening step of the test procedure at the first stage is identical

to the pilot design in the previous section. The only difference
to the pilot design is that the final test decisions based on the
selected null hypotheses are derived from integrated P-values

pi ¼ 1��ðziÞ which are based on the data from both stages.
An obvious way to construct single combination test statistics zi
from both stages is to combine the stagewise standardized

means by suitable weights as applied for adaptive multi-stage
clinical trials (e.g. Lehmacher and Wassmer, 1999):

zi ¼
ffiffiffiffiffiffi
w1
p

z
ð1Þ
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

p
z
ð2Þ
i : ð5Þ

Now the test decision is again very simple: a selected null
hypothesis H0i is rejected in the final test if pi < �. Otherwise
it is accepted. Optimizing the non-centrality parameter

ð
ffiffiffiffiffiffi
w1
p ffiffiffiffiffi

n1
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

p ffiffiffiffiffi
n2
p

kÞ� of the test statistics zi leads to
the optimal weight

w1 ¼
n1

n1 þ n2k2
: ð6Þ

If the same method (with the same effect size, k¼ 1) is used at
both stages, then the weight w1 ¼ n1=ðn1 þ n2Þ corresponds to

that used in a group sequential two-stage design. Note that
using ‘non-optimal’ weights may lead to a larger power of the
pilot design as compared to the integrated design when the
effect size in the second stage is much larger than in the first

stage (as already pointed at by Skol et al., 2006).

5.2 Optimal designs controlling the FWE rate

For the control of the FWE rate, the corresponding � is the

solution of:

�s ¼ PH0i
ðpð1Þi < �1, pi < �Þ

¼

Z 1
c1��1

1��
c1�� �

ffiffiffiffiffiffi
w1
p

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

p

� �� �
’ðzÞdz

ð7Þ

where �s is set to �=m1. ’ denotes the density function of the

standard normal distribution. Note again that n2 is random

because it depends on the number of selected hypotheses (which

also is random). By re-formulating the test decisions in terms of

a sequential P-value psi based on the Tsiatis–Mehta–Rosner

ordering, (H0i is rejected if psi < �s) one can show that this

procedure with the predefined sample size reallocation rule for

the selected null hypotheses controls the FWE rate because

under the null hypothesis they follow a uniform distribution

(Zehetmayer et al., 2005). The overall power is given byY
int
¼ P�1i¼��1,�2i¼k��2 ðp

ð1Þ
i < �1, pi < �Þ

¼

Z 1
c1��1

1�� ffiffiffiffi
n2
p

k�, 1

c1�� �
ffiffiffiffiffiffi
w1
p

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w1

p

� �� �
’ ffiffiffiffi

n1
p

�, 1ðzÞdz,
ð8Þ

where, ’�, �2 is the density function of the normal distribution

with mean � and variance �2. Given the other quantities, we

can optimize
Q

int in the two design parameters r and �1. Note

that the optimal �1 and r, as in the pilot design, depend on C,

m1, � and k via
ffiffiffiffiffiffiffiffiffiffiffiffi
C=m1

p
� and k=

ffiffiffiffiffi
c2
p

.

5.3 Optimal designs controlling the FDR

For the control of the FDR, asymptotically the rejection

boundary for the P-values in the final test is given by the

solution of

� ¼
�0�s

�0�s þ ð1� �0Þð1� �ð�sÞÞ
ð9Þ

where �s is a function of � which is given by (7). Such a two-

stage procedure with a predefined sample size allocation rule

controls the FDR, since it can be shown that the resulting

sequential P-values psi are independent across hypotheses

(Zehetmayer et al., 2005). Again, optimal values of r and �1
can be determined by maximizing the power (8) under the

constraint (9). The rejection boundary � for the P-values pi of

the selected null hypotheses calculated from pooling stagewise

z-scores (5) with optimal weights (6) can then be found

numerically from solving Equation (7).

6 COMPARISON OF TWO-STAGE PROCEDURES

6.1 Pilot design

Assume first that the experimenter has two different

candidate methods for the measurements from the very

beginning, a low-cost standard method and a high-cost

improved method. So he could apply the same method at

both stages (‘low–low’ or ‘high–high’), or he may switch to the

more expensive method at the second stage (‘low–high’). In the

following, we investigate which of these three procedures is

more powerful when controlling the FWE rate. Using the same

Two-stage designs with differing costs
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test statistics only with modified critical boundaries, we expect

similar findings when controlling the FDR. The power of the

pilot design controlling the FWE rate for the low–high

procedure is given by (3). Clearly the power of a procedure

using the low-cost method in both stages,
Q

pll
, say, is given by

setting k¼ 1 and c2¼ 1; the power for the procedure using the

high-cost method at both stages,
Q

phh
, say, arises from (3) by

using ð1�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrC=m1c2Þ
p

k�, 1
ðc1��1 ÞÞ for the first-stage power

leaving the second-stage power unchanged. It is easy to see

that for k ¼
ffiffiffiffiffi
c2
p

we get the identity
Q

p �
Q

pll
�
Q

phh
. Hence,

the maxima of all three functions in r and �1 are identical.

Since formula (3) is monotonic in c2, the two-stage procedure

applying the low-cost measurement method at both stages

dominates the other two procedures (‘low–high’ and

‘high–high’) if the high-cost method is not sufficiently efficient,
i.e. when c2 > k2. For c2 < k2, the high–high procedure

dominates the other two. Hence, the important conclusion is

that the procedure switching from the low-cost to the high-cost

method is never the best procedure in terms of asymptotic

power. However, it may be useful if the asymptotically optimal

sample size (n1) at the first stage is too small for the high–high

procedure. Figure 1 shows the maximum asymptotically

optimal power over the three procedures for the pilot design

for varying c2, given the constraint n1 � 1. Two different effect

ratios are assumed, k¼ 3 and 4. The example C¼ 20 000,

m1¼ 1000, �0 ¼ 0:99 and �¼ 0.05 (FWE), was used assuming
an effect size for the low-cost measurement method of

�¼ 0.5. The asymptotically optimal power is given for the

three procedures. The solid lines mark the respective maximal

power over the three procedures if at least one observation

is left at the first stage for the optimal high–high procedure.

Note that for the other two procedures, the asymptotically

optimal n1 is always larger than one. Obviously, the high–high

procedure has the maximum power for relatively low costs c2.
For the cost ratio k¼ 4, the solid curve jumps when the costs of

the high-cost method get too large resulting in an asymptotic
optimal n1<1. Here, the region where the low–high procedure

is preferable to both, the other is very small, for k¼ 3 no such
region exists. If we apply the constraint n1 � 2, the region

where the low–high procedure is preferable gets larger. For our
example, such a region would even exist for an effect ratio of

k¼ 3 (data not shown). Note that the crossing point depends
on the unknown effect size, and no procedure dominates

the other two over the whole parameter space. Hence, in case
of design misspecifications in the planning phase there will

be other parameter constellations where the low–high type
of strategy is in fact more powerful. However, when no

misspecifications occur, the low–high procedure is preferable
only if the high-cost method is too expensive so that the

first-stage sample size for the high–high procedure is
insufficiently small.

6.2 Integrated design

Comparing the three procedures for the integrated design, we

have to modify the formula for the power
Q

int given for the
low–high procedure in (8). For the low–low procedure to

calculate the power, we have to insert k¼ 1 and c2¼ 1. For the
high–high procedure, we have to replace

ffiffiffiffiffi
n1
p

� by
ffiffiffiffiffiffiffiffiffiffiffi
n1=c2
p

k�.

It can be seen easily that again for k ¼
ffiffiffiffiffi
c2
p

the three power
functions are identical so that there is the same crossing point

for the integrated design. Essentially, the results are very similar
to those in Figure 1 for the pilot design (data not shown).

Note that the common crossing point exists only if in the
integrated low–high procedure the optimal weights (9) are used

for combining the stagewise test statistics. The low–high
procedure looses power when applying non-optimal weights

(which will be the rule in applications).

6.3 Examples: optimal designs for k¼ 1 and c2 � 1

The previous sections have shown that if two methods are

available, differing in costs and effect sizes, using two-stage
designs applying the same method at both stages may be

preferable. Asymptotically, optimal two-stage designs applying
the same method at both stages (k¼ 1) can be derived as in

Zehetmayer et al. (2005) if the costs do not differ between stages
(c2¼ 1) using appropriately defined total costs C. In the

following, we focus on designs using the same methods at
both stages; the second-stage measurement, however, raising

extra costs c2>1. When c2>1, we have to use the power
formulas (3) and (8) with k¼ 1 to derive asymptotically optimal

designs. Table 1 for k¼ 1 and some c2 gives the design
parameters of optimal pilot and integrated designs and their

power for controlling the FWE rate and the FDR. Note that
the optimal power values given for the integrated designs are

only slightly larger than those of the pilot designs. For
comparison, the power of the (asymptotic) single-stage designs

with equal total costs for the control of the FWE rate and FDR
are also listed in Table 1. As one can see from the tables, the

asymptotic optimal screening boundary �1 decreases with
increasing costs c2. For the same costs, the screening boundary

�1 slightly increases with increasing �. At the same time, the

5 10 15 20

0.
3

0.
5

0.
7

0.
9

c2

Π
p

k=3
k=4

k=4

k=3

Fig. 1. Asymptotically optimal power of the low–low (dashed-dotted

horizontal line), the low–high (dashed lines) and the high–high (dotted

lines) procedure of the pilot design for varying c2 and effect size ratios

k¼ 3 and k¼ 4. The solid lines mark the respective maximum over the

three procedures under the constraint n1 � 1 for the high–high design.

C ¼ 20 000, m1¼ 1000, �0 ¼ 0:99, �¼ 0.5, FWE rate �¼ 0.05.
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proportion of costs used for the first stage increases with �.
Note that due to the complexity of the power function there is a

different dependence on costs for low and large effect sizes,

which is also depending on FDR or FWE control. At least in
the asymptotically optimal number of selected hypotheses

m2 increases with � and decreases with costs c2 throughout the

whole designs considered. Note that using designs with stage-
wise integer sample size (first rounded downwards and

randomly choosing hypotheses where the rounded sample
size is increased by 1 in order to achieve constant total costs)

does not noticeably decrease the power as compared to

the optimal non-integer designs. Simulations (100 000 runs
each) for the cases C¼ 20 000, m1¼ 1000, �0 ¼ 0:99, �¼ 0.75,

c2¼ 5 and 15 from Table 1 show for the pilot design
power values of

Q
p ¼ 0:753 and 0.574, respectively for an

FWE rate of �¼ 0.05 and
Q

p ¼ 0:802 and 0.660 for

FDR control at the same level. It has to be mentioned that
for large costs the number m2 of selected hypotheses may

become small, so that the finite sample size modification of
formulas (1) and (2) proposed by Storey, et al. (2004) has to

be used in order to guarantee control of the FDR. This leads

to a slight decrease in power.

7 WHEN TO USE TWO-STAGE DESIGNS

7.1 Break even point in the cost ratio

It has been shown that for large m1 and constraints on the

total costs, the power of an asymptotic optimal two-stage
design may be considerably larger than the power of the

corresponding single-stage design (see Table 1). Again,
the scenario is considered where the same method is applied

at the two stages (k¼ 1) and the second stage measurement

raises extra costs (c2>1). We investigate when it is more
efficient in terms of asymptotic power to use a two-stage

design as compared to the single-stage design. We tackle the

problem by asking whether a cost ratio c�2 exists, where

the power of the single-stage and the two-stage designs are the

same. If the asymptotic power would be monotonically

decreasing in c2 for c2 > c�2, the single-stage design would

provide a larger power than the two-stage design. The first

important answer is that for the integrated design such a

finite c�2 does not exist, because for given C, m1, �, k and �
and c2 !1 the power of the asymptotic optimal integrated

design converges to the power of the single-stage design

applying the low-cost measurement method. Hence, for the

integrated approach theoretically the two-stage approach

always pays off. However, in practice, if the optimal second-

stage sample size gets too small, the two-stage design cannot

be used. For the pilot design, the power converges to

0 as c2 !1. Hence, for the pilot design in general such a

break even point c�2 between the two-stage and single-stage

designs exists. Figure 2 shows c�2 for varying �0 and � for

the case of controlling the FWE rate or the FDR at �¼ 0.05.

Again, C was set to 20 000 and m1 was set to 1000. The curves

are fairly similar for control of the FWE rate and the FDR,

the break even point varying more when the FDR is controlled.

For large effect sizes, the power of the single-stage design and

the pilot design are close to 1, and consequently c�2 is small. For

decreasing effect sizes, the break even point c�2 is increasing.

When the number of true alternatives decreases (�0 increases) c
�
2

increases. In both situations, a smaller number of null

hypotheses is selected for the second stage (with larger sample

sizes n2) so that we can afford higher costs for the selected

hypotheses. Note that the power when controlling the FDR is

always slightly larger than when controlling the FWE rate.

If there is a relatively large proportion of alternatives with

substantial effects, the break even point is smaller for

controlling the FDR than the FWE rate: the single-stage

design controlling the FDR then is noticeably more powerful

than the single-stage design controlling the FWE rate.

Table 1. Optimal two-stage designs controlling the FWE rate or FDR at �¼ 0.05

�¼ 0.5 �¼ 0.75 �¼ 1

c2 Design r �1
Q

i �1
Q

r �1
Q

FWE rate 1 Pilot 0.635 0.074 0.594 0.718 0.092 0.926 0.774 0.097 0.995

integrated 0.642 0.077 0.603 0.725 0.103 0.934 0.779 0.120 0.997

5 Pilot 0.683 0.015 0.341 0.737 0.019 0.762 0.781 0.019 0.966

integrated 0.697 0.016 0.351 0.759 0.021 0.783 0.806 0.024 0.974

15 Pilot 0.685 0.006 0.214 0.701 0.007 0.589 0.722 0.007 0.893

integrated 0.706 0.006 0.226 0.745 0.007 0.628 0.787 0.008 0.925

Single-stage design 0.049 0.296 0.720

FDR 1 Pilot 0.632 0.096 0.641 0.715 0.119 0.943 0.772 0.121 0.997

integrated 0.639 0.101 0.651 0.722 0.137 0.951 0.776 0.158 0.998

5 Pilot 0.701 0.019 0.379 0.765 0.025 0.810 0.807 0.025 0.977

integrated 0.707 0.020 0.387 0.778 0.029 0.828 0.824 0.033 0.983

15 Pilot 0.716 0.007 0.242 0.766 0.009 0.673 0.799 0.009 0.936

integrated 0.723 0.007 0.249 0.788 0.010 0.700 0.832 0.012 0.954

Single-stage design 0.056 0.443 0.877

Asymptotically optimal parameters �1, r and the power
Q

for different c2 and �. k¼ 1, C¼ 20 000, m1¼ 1000, �0¼ 0.99. Power values of the corresponding single-stage

designs are given for comparison.
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For decreasing �, this advantage in power of the single-stage

FDR design over the single-stage FWE design decreases,

whereas the optimal two-stage design controlling the FDR

still has favorable properties as compared to the two-stage

FWE design. Hence, larger second-stage costs can be afforded

to achieve the same power as the corresponding single-

stage design. This may lead to a crossing of the two

corresponding curves.

7.2 Impact of design misspecifications

Whereas costs are usually known a priori, the optimal designs

depend on the unknown proportion �0 and effect size �.

Hence, the impact of design misspecifications in the planning

phase is an important issue. In the following, again we consider

the scenario C¼ 20 000, m1¼ 1000 and �¼ 0.05. It is assumed

that the optimal r and �1 were planned for the situation where

�¼ 0.75, �0 ¼ 0:99 and k¼ 1. Figure 3 shows the differences

between the power of the two-stage designs and the single-stage

design as a function of the true �0 and � for controlling the

FDR and FWE rate. Positive values indicate superiority of the

two-stage design. The example with a cost ratio c2¼ 15 (confer

Wang et al., 2006) is plotted for the pilot (first row of the
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Fig. 3. Contour plots for the difference in power between the single-stage and the pilot design (first row) and the single-stage and the integrated

design (second row) as a function of the true �0 and � for controlling the FWE rate (first column) or the FDR (second column). Positive values

indicate superiority of the two-stage design. Bold lines mark equality between the single-stage and the two-stage design. Asymptotically, optimal two-

stage designs were planned for �0 ¼ 0:99 and �¼ 0.75 (marked as cross, confer Table 1). C¼ 20 000, c2¼ 15 and m1¼ 1000.
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Fig. 2. Break even point c�2 for the cost ratio between the asymptotically

optimal pilot design and the single-stage design depending on � and �0,

for controlling the FDR (dashed lines) or the FWE rate (solid lines).

C ¼ 20 000, m1¼ 1000, FWE rate and FDR both �¼ 0.05.
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panels) and the integrated design (second row). Not surpris-
ing, the figures show that the integrated design is more
robust against misspecifications of �0 and � than the pilot

design: it uses the whole data set from both stages for test
decisions. The most robust design is the integrated design
controlling the FWE (Fig. 3C). Here, in the parameter

subspace, the two-stage integrated design shown is always
noticeably better than the single-stage design. Controlling the
FDR, the advantage of the single-stage design to adapt for

�0 results in smaller differences between the integrated two-
stage design and the single-stage design (Fig. 3D): in the left
upper corner, the single-stage design is outperforming the

two-stage design. The pilot design controlling the FWE rate
is more sensible with regard to the design misspecifications

than the pilot design controlling the FDR. The design applies
‘non-optimal’ selection criteria and controlling the FWE rate
no adaption to the correct parameters is possible in the

second-stage sample (Fig. 3A): in the left upper corner, the
power of the single-stage design may become substantially
larger than the two-stage pilot design. Controlling the FDR

adapting to the true parameters in the second-stage sample
helps a little (Fig. 3B): there is only a slightly larger power of
the single-stage design as compared to the two-stage pilot

design in the left upper corner. Generally, a design optimal
for a fraction of true null hypotheses which is larger than the
true �0 can lead to a considerable loss of power as compared

to the corresponding single-stage design. However, if the true
�0 gets larger than the proportion used for planning and the
true effect size � is close to the one used for planning

generally the difference between two-stage designs and the
single-stage design increases. Optimism in the planning phase

with regard to the number of true alternatives may help to
avoid a loss of power due to design misspecification. If the
true effect size � gets larger than the one from the planning

phase for values of �0 close to the true one, the power of the
two-stage and single-stage designs both approach 1 so that
the differences in the contour plots decrease.

8 DISCUSSION

We have investigated two-stage designs in the situation that

large numbers of null hypotheses are tested and only a small
proportion of them are expected to be wrong. Moreover, it was

assumed that there are constraints on total costs of the
experiment. The first stage is used for screening out promising
hypotheses which are then investigated further at the second

stage. We focused on an important scenario in practice
assuming that costs per measurement differ between stages:
on the one hand, extra costs may arise when the same

measurements have to be designed for a subset of hypotheses
selected in an interim analysis and investigated at the second
stage. On the other hand, the investigator from the very

beginning may have the choice between a low-cost method and
a high-cost method (which hopefully is more efficient in terms
of the effect size under the alternatives). Given a large number

of candidate hypotheses, we derived asymptotically optimal
designs in terms of power using the simplifying assumptions
of common alternatives (either controlling the FWE rate or

the FDR).

We would like to summarize the results in the following way:
if two different methods are available, depending on the ratios
between costs and effect sizes it is preferable to run two-stage

designs which apply either the low-cost or the high-cost method
at both stages. Designs starting with the low-cost method and
switching to the more expensive method in the interim analysis

may only be advisable if there is lack of resources, so that first-
stage sample size for the high-cost method would be too small.
However, it has to be kept in mind that the best design depends

on the relationship of the effect size and the cost ratios. Hence,
in case of effect size misspecifications in the planning phase,
the low–high method may actually be more powerful than the

low–low or the high–high strategy. However, it seems natural
to apply a design which is preferable under the parametric
constellation considered in the planning phase. In the integ-

rated design, the optimal way of combining more data from
both stages arising from different measurement methods
depends on the effect size ratio between stages, which intro-
duces a further complication for appropriately designing

such experiments applying different methods.
Two-stage screening designs are a very powerful tool even if

we deal with equal effect sizes at the second stage, but the costs

for designing the measurements for the selected hypotheses at
the second stage are fairly high. Only severe design misspeci-
fications in the planning phase may lead to a noticeable

loss of power such that the single-stage design may become
superior in power. With regard to the impact of design
misspecification in the proportion of true alternatives,

it seems to be preferable not to assume too small proportions
in the planning phase. Integrated designs which use data from
both stages for the final test decisions are more robust against

design misspecifications.
With respect to deviations from the underlying assumption,

we calculated optimal designs for the unknown variance case

using the central and non-central t-distributions instead of the
corresponding normal distributions. Again, assuming �¼ 0.75,
c2 ¼ 5 and 15 from Table 1, the optimal parameters for the

pilot design controlling the FWE rate are r¼ 0.722, �1 ¼ 0:020
and r¼ 0.703, �1 ¼ 0:007, respectively, which are very close to
those of the known variance case. The corresponding optimal

power values for the unknown variance case drop to 0.681 and
0.473. For the control of the FDR, the corresponding optimal
design parameters in the unknown variance case change to

r¼ 0.748, �1 ¼ 0:026 for c2¼ 5 and to r¼ 0.757, �1 ¼ 0:009 for
c2¼ 15. The optimal power decreases to 0.747 and 0.565,
respectively. However, using the optimal parameters for the

known variance case in the situation of unknown variances
leads to virtually the same performance as using the optimal
parameters from the unknown variance case. Note that in

the unknown variance case, the decision which of the
procedures (low–low, high–high or low–high) is preferable
is more difficult because no common crossing point in costs as a

function of c2 between the three procedures exists. However,
the region where the low–high procedure is preferable still
remains small.

To investigate the impact of correlation, we assumed
an autoregressive correlation structure among the hypotheses.
The correlation between hypotheses i and j is given by 	ji�jj for
some 	 2 ð0, 1Þ. The alternative hypotheses (�¼ 0.75) are
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randomly distributed among the hypotheses. For example the
simulated power values (100 000 runs) for c2¼ 5 assuming a
correlation of 	¼ 0.2, 0.6 and 0.9 are 0.753, 0.749 and 0.728,
respectively when controlling the FWE rate, and 0.802, 0.798

and 0.777, respectively when controlling the FDR (compare
Table 1). Hence, the impact of correlation is small like in
the case of constant costs in Zehetmayer et al. (2005). For the

two-sided situation, we refer to their proposal to test a set of
2m1 one-sided hypotheses.
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