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Optimized multi-stage designs controlling the false discovery
or the family-wise error rate
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SUMMARY

When a large number of hypotheses are investigated, we propose multi-stage designs where in each
interim analysis promising hypotheses are screened, which are investigated in further stages. Given a fixed
overall number of observations, this allows one to spend more observations for promising hypotheses
than with single-stage designs, where the observations are equally distributed among all considered
hypotheses. We propose multi-stage procedures controlling either the family-wise error rate (FWER) or
the false discovery rate (FDR) and derive asymptotically optimal stopping boundaries and sample size
allocations (across stages) to maximize the power of the procedure. Optimized two-stage designs lead
to a considerable increase in power compared with the classical single-stage design. Going from two to
three stages additionally leads to a distinctive increase in power. Adding a fourth stage leads to a further
improvement, which is, however, less pronounced. Surprisingly, we found only small differences in power
between optimized integrated designs, where the data of all stages are used in the final test statistics,
and optimized pilot designs where only the data from the final stage are used for testing. However, the
integrated design controlling the FDR appeared to be more robust against misspecifications in the planning
phase. Additionally, we found that with increasing number of stages the drop in power when controlling
the FWER instead of the FDR becomes negligible.

Our investigations show that the crucial point is not the choice of the error rate or the type of design,
but the sequential nature of the trial where non-promising hypotheses are dropped in the early phases of
the experiment. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In multi-stage designs for gene association or expression studies, early stages are used to screen
promising genes out of all initially studied genes. Only the selected genes are investigated in further
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stages based on additional observations. There is a rich literature on the special case of two-stage
designs that demonstrate the superiority of the sequential approach compared with the conventional
single-stage designs where the observations are evenly distributed among the considered hypotheses
[1–8]. In this paper, we explore the gain in efficiency when increasing the number of stages. We
give a general framework for the implementation of multi-stage designs for testing problems with
a large number of hypotheses controlling either the false discovery rate (FDR) or the family-wise
error rate (FWER). We cover designs with deterministic stage-wise sample sizes as well as designs
where the overall number of observations is fixed and at each stage a pre-specified fraction of
the observations is evenly distributed among the selected hypotheses. The latter approach leads to
data-dependent stage-wise sample sizes for each individual hypothesis. For designs with a fixed
overall number of observations, we derive asymptotically (letting the number of hypotheses go
to infinity) optimal stopping boundaries and asymptotically optimal allocations of observations
across stages. Here, we compare pilot designs, where the final test statistics are based only on data
from the last stage, as well as integrated designs, where the pooled data from all stages enter the
final test decision.

Multi-stage designs can be applied in gene–disease association studies, where a large number
of marker loci are investigated in order to identify genes, when conferring for a disease of interest.
Here, the design constraint is often the total cost, represented by the total number of gene evaluations
rather than the total number of individuals (cf. [3]). We show that increasing the number of stages
leads to a pronounced gain in efficiency regardless of the error criterion (FDR or FWER) or the
type of design (pilot or integrated). When applying asymptotically optimal design parameters in
experiments with three or four stages, we observed only minor differences in power between the
different types of designs and error rates. However, integrated designs and designs controlling the
FDR appear to be more robust to misspecifications of the design parameters.

The paper is structured as follows: In Section 2 we specify the testing problem, shortly review the
estimation of the FDR in single-stage designs (Section 2.1) and introduce the pilot (Section 2.2) and
the integrated design (Section 2.3). Here the per-hypothesis sample sizes in each stage are assumed
to be fixed. As of Section 3 the overall number of observations is assumed to be fixed and thus the
per-hypothesis sample sizes are random variables. In Section 4 we derive asymptotic expressions
for the power and compute asymptotically optimal stage-wise sample sizes and selection thresholds
for several settings. We investigate the robustness of the optimal designs to deviations from the
planning assumptions and give a real data example. Results are summarized in a short discussion.

2. DESIGNS WITH FIXED STAGE-WISE PER-HYPOTHESIS SAMPLE SIZES

We consider an experiment with m1 one-sided null hypotheses for the means �(i), i=1, . . . ,m1
of independent, normally distributed observations with known variances (�(i))2, assuming also
independence across hypotheses. We test the hypotheses

H (i)
0 : �(i) =0 against H (i)

1 : �(i)>0, i=1, . . . ,m1

and assume that for a fraction �1 of the m1 hypotheses the null hypothesis holds. Below we
investigate single- and multi-stage designs to test the m1 hypotheses controlling either the FDR,
defined as the expected proportion of Type I errors among the rejected hypotheses (e.g. [9]), or the
FWER, defined as the probability of at least one Type I error. Consider a multi-stage experiment
with k stages and k−1 interim analyses. At each interim analysis, only hypotheses with promising
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effect sizes are carried on to the subsequent stage for being further observed. The other hypotheses
are dropped and accepted. Let m2� · · ·�mk denote the number of hypotheses considered at stages
2, . . . ,k. Note that for t>1 the mt are random variables that depend on the outcomes of the
preceding stages.

In this section, we consider the case of deterministic sample sizes balanced over the selected
hypotheses per stage. As of Section 3, designs with a fixed overall number of observations and
consequently random stage-wise per-hypothesis sample sizes are considered.

2.1. Single-stage designs

We first consider single-stage designs (k=1). The stage-wise per-hypothesis sample sizes are
given by n1; s

(i)
1 denotes the sum of observed values for hypothesis i . The p-values are then

given by p(i)
1 =1−�{s(i)

1 /(�(i)√n1)}, where �(.) denotes the cumulative distribution function of
the standard normal distribution. For the control of the FWER at level �, we use the Bonferroni
adjustment and apply individual significance levels �=�/m1 for each hypothesis. To control the
FDR, the expected fraction of erroneously rejected null hypotheses among all rejected hypotheses
is estimated. If all hypotheses with an individual p-value p(i)

1 smaller than a critical value � are
rejected, the resulting FDR can be estimated by [10]

F̂DR�(�)= �̂1�m1

max(#{p(i)
1 ��},1)

, i=1, . . . ,m1 (1)

Here �̂1 is an estimator of �1 given by

�̂1=#{p(i)
1 >�}/{(1−�)m1} (2)

where #{p(i)
1 >�} denotes the number of p-values exceeding �. �∈[0,1] is a tuning parameter

chosen a priori. Increasing � reduces the bias of �̂1 at the cost of a higher variance. Storey
[10] suggested to set �=0.5, which gives a good trade-off of bias and variance. Alternatively, he
suggested a Bootstrap algorithm to choose �. To perform a test with a specified FDR �, the largest
� is determined such that F̂DR�(�)��. Storey et al. [11, Theorem 3] showed that this procedure
controls the FDR if the p-values corresponding to the true null hypotheses are independent and
uniformly distributed.

2.2. Pilot designs

In the pilot design, several single-stage experiments are performed consecutively. At each interim
analysis hypotheses are dropped and accepted based on the stage-wise p-values of the preceding
stage. At the final stage k, the remaining hypotheses are tested based on the p-values p(i)

k from
the last stage. More formally, let (�1, . . . ,�k−1) denote a vector of critical values. The stage-wise

per-hypothesis sample sizes are denoted by n1, . . . ,nk , and s(i)
t denotes the sum of observations for

hypothesis i from stage t . The stage-wise p-values are then given by p(i)
t =1−�{s(i)

t /(�(i) √nt )}.
At interim analysis t , t=1, . . . ,k−1 all hypotheses that reached stage t and for which p(i)

t ��t
are selected for stage t+1. In the final analysis, all hypotheses that reached stage k and for which
p(i)
k ��k are rejected. To control the FWER of the procedure overall we set �k =�/mk , where mk

denotes the number of hypotheses that reached stage k. To control the FDR of the experiment, the
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critical value �k is given by the maximal � (as in the single-stage design) such that

�̂k�mk

max(#{p(i)
k ��},1)

�� (3)

where �̂k is the estimated proportion of true null hypotheses in stage k given by (2) with p(i)
1

replaced by p(i)
k . It is the special feature of the pilot design that previous stages are only used

for selection of hypotheses but not for testing. Therefore, a test procedure controlling the FDR
(FWER) at the last (‘inferential’) stage controls the FDR (FWER) overall.

A related approach was investigated by Van den Oord and Sullivan [12]. For each stage they
fixed the FDR and then applied the corresponding critical values.

2.3. Integrated design

The pilot design uses at each interim analysis only the data of the directly preceding stage.
Although this approach is appealing for its simplicity, efficiency may be gained by using designs
that employ the accumulated data at each stage. Such designs can be realized with group sequential
plans [13] for each hypothesis i . Let s̃(i)

t denote the sum of all observations for hypothesis i
from stage 1 to stage t (in the following the symbol ‘∼’ always denotes the cumulative quantity).

Then p̃(i)
t =1−�(s̃(i)

t /(�(i)
√∑t

j=1 n j )) gives the (cumulated) p-value for hypothesis i at stage t .

To define the stopping boundaries, we specify continuation probabilities gt , t=1, . . . ,k−1, which
give the probability under the null hypothesis that the trial continues at least to stage t+1. The
continuation probabilities define critical values �̃t for the cumulative p-values p̃(i)

t : a hypothesis
is accepted early at stage t<k (and excluded from further consideration) if p̃(i)

t >�̃t . �̃t at stages
t=1, . . . ,k−1 are recursively defined by �̃1=g1, and the solutions of

gt = P
H (i)
0

[
t⋂

l=1
{P̃(i)

l ��̃l}
]

(4)

in �̃t . Here P̃(i)
l denote random variables. To specify the rejection region, for each individual

hypothesis i we derive a sequential p-value based on a stage-wise ordering of the sample space
[14]. Let �(i) denote the final stage for hypothesis i . Hence, �(i)<k if hypothesis i was accepted
early and �(i) =k if it reached the final stage. Assume that hypothesis i stopped at stage �(i) = t (i)

and the p-value p̃(i)
t (i)

is observed. Then the sequential p-value is defined by

p̃(i) = P
H (i)
0

[
t (i)−1⋂
l=1

{P̃(i)
l ��̃l}∩{P̃(i)

t (i)
� p̃(i)

t (i)
}
]

(5)

The probabilities in (4) and (5) can be calculated with standard software for group sequential
tests as, e.g. the R-package ‘seqmon’ [15]. Note that this p-value has the following monotonicity
property: p̃(i) lies in the interval (gt ,gt−1] if and only if the test for hypothesis i stopped for
futility at stage t . Additionally, this p-value does not depend on sample sizes beyond the observed
stopping stage [13, p. 181].

To control the FWER of the experiment, in the final analysis we reject all hypotheses whose
sequential p-values fall below �/m1. To control the FDR, we reject all null hypotheses whose
sequential p-values p̃(i) fall below a critical value �̃, where �̃ is the maximal critical value such

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4145–4160
DOI: 10.1002/sim



OPTIMIZED MULTI-STAGE DESIGNS 4149

that

�̂1�̃m1

max(#{ p̃(i)��̃},1)�� (6)

and �̂1 is defined as in (2) with p(i)
1 replaced by p̃(i). Under the null hypothesis H (i)

0 , the sequential
p-values are uniformly distributed [14, 16] and the p-values are stochastically independent across
hypotheses because of the independence of observations across hypotheses. Thus, by Theorem 3
in [11] the procedure controls the FDR.

3. DESIGNS WITH A FIXED TOTAL NUMBER OF OBSERVATIONS

We now consider designs where the total number of observations across stages and hypotheses,
N , is fixed and thus the stage-wise per-hypothesis samples sizes are random (as in [3, 5]). For
example, N could denote the total number of genotyping or the total costs. At each stage a (pre-
determined) fraction rt (

∑k
t=1 rt =1) of the total number of observations N is distributed among

all hypotheses selected for this stage. Thus, given a hypothesis has not been dropped before the
t th stage, its sample size at stage t is given by nt =rt N/mt , with mt denoting the number of
hypotheses selected for stage t . Since the mt are stochastic, this results in random sample sizes
n2, . . . ,nk (for simplicity, we use the same notation as in the case of deterministic stage-wise
per-hypothesis sample sizes). Only the first-stage sample size is deterministic as m1 is prefixed.
For the pilot designs, this has no impact on the type I error rate since the p-values at each stage
are evaluated separately and the stage-wise p-values are uniformly distributed under the null and
independent across hypotheses. Hence, the proposed procedures to control the FDR and the FWER
can still be directly applied. For the integrated design with sample sizes given by nt =rt N/mt the
arguments are more involved. Assume that the stopping boundaries �̃t and the sequential p-values
p̃(i) are computed as in (4) and (5) plugging in the observed sample sizes (ignoring the fact that
they are random). In Theorem 1 in Appendix A, we prove that the resulting sequential p-values
corresponding to the true null hypothesis are still independent and uniformly distributed. Thus
in applying the Bonferroni-corrected significance levels to the sequential p-values, the FWER is
controlled. Additionally, by Theorem 3 in [11] the procedure of Storey applied to the sequential
p-values controls the FDR.
In case nt =rt N/mt is not an integer, we propose to round first downwards and to distribute

the remaining observations across randomly selected hypotheses.

4. OPTIMAL DESIGN PARAMETERS FOR DESIGNS WITH A FIXED TOTAL
NUMBER OF OBSERVATIONS

Given a fixed total number of observations N , the design parameters of multi-stage designs are
the fractions of observations rt to be spent at each stage as well as the futility bounds �t (for the
pilot design) or the continuation probabilities gt (for the integrated design). Again let �1<1 denote
the proportion of true null hypotheses among the m1 considered hypotheses. For the (1−�1)m1
remaining hypotheses, we assume a common effect size of �/�. We aim to optimize the individual
power, which is the probability for an alternative hypothesis i to be selected and rejected. Since
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we assumed the same effect size for all alternative hypotheses, the individual power is identical for
all alternative hypotheses. Additionally, the individual power is equal to the expected proportion
of alternative hypotheses that are rejected. Although the exact power is difficult to compute, we
can derive asymptotic expressions for the individual power, which we then optimize in the design
parameters.

4.1. Optimal pilot designs

Let �1, . . . ,�k−1 and r1, . . . ,rk be fixed and assume that the (for t�2 stochastic) stage-wise per-
hypothesis sample sizes are given by nt =rt N/mt . We derive asymptotic expressions for the
individual power letting m1→∞ and assuming that N =dm1 for some d>0. We show by induction
that the stage-wise per-hypothesis sample sizes nt and the probabilities

� j = P�(i)=�/�(P
(i)
j �� j )=1−�(c1−� j −

√
n j�/�)

to select an alternative hypothesis for stage j+1 given that it reached stage j converge almost
surely and derive their limits. Here, c	 denotes the 	-quantile of the standard normal distribution.
First note that n1=r1N/m1=r1d and �1 are deterministic. Assume now for j =1, . . . , t that
n j → n̄ j (where → denotes almost sure convergence for m1→∞ and N =dm1) and � j →�̄ j
where

�̄ j =1−�(c1−� j −
√
n̄ j�/�) (7)

Then, using the strong law of large numbers, we have mt+1/m1→�1
∏t

j=1 � j +(1−�1)
∏t

j=1 �̄ j .

Thus,

nt+1= rt+1N

mt+1
→ n̄t+1 := rt+1d

�1
∏t

j=1 � j +(1−�1)
∏t

j=1 �̄ j
(8)

and consequently also �t+1→�̄t+1, where �̄t+1 is defined in (7). Then, asymptotically the
probability for an alternative hypothesis to reach the final stage is

∏k−1
t=1 �̄t .

Control of the FDR: The proportion of true null hypotheses in stage k converges almost surely to
�k =�1

∏k−1
j=1 � j/[�1

∏k−1
j=1 � j +(1−�1)

∏k−1
j=1 �̄ j ]. For �<1 the estimator �̂k (defined as in (2)) is

biased and converges almost surely to, say, �k(�)��k . Since lim�→1�k(�)=�k , the critical value
for the final analysis �k asymptotically (letting m1→∞,N =d m1 and then �→1) satisfies the
equation [11]

�= �k�k
�k�k+(1−�k)P�(i)=�/�(pk��k)

= �1
∏k

j=1 � j

�1
∏k

j=1 � j +(1−�1)
∏k

j=1 �̄ j
(9)

Note that �k enters the equation also via �̄k defined in (7). The individual power is asymptotically
given by �̄=∏k

t=1 �̄t , where �k solves (9).
Control of the FWER: To get an approximate expression for the procedure that controls the

FWER, we set �k =�/(m1
∏k−1

t=1 �̄t ).
To obtain optimal design parameters, we numerically optimize the �̄ with respect to �1, . . . ,�k−1

and r1, . . . ,rk . It is easy to see that �̄ and consequently also the optimal parameters depend on
N , m1, � and � only via

√
N/m1�/� and for the FWER additionally on m1 (via the rejection

boundary).
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4.2. Optimal integrated designs

Analogous to the pilot design, we derive an approximation for the individual power of the integrated
design letting m1→∞ and assuming that N =dm1 for some d>0. First let g1, . . . ,gk−1 and
r1, . . . ,rk be fixed and assume that the (for t�2 stochastic) stage-wise per-hypothesis sample sizes
are given by nt =rt N/mt . P�(i)=�/�,n̄1,...,n̄t { p̃(i)�gt } is the probability for an alternative hypothesis
to reach stage t+1 in a group sequential test with fixed stage-wise sample sizes n̄1, . . . , n̄t (this
probability depends only on the first t stage-wise sample sizes). By analogous arguments as for the
pilot design, we derive limits for the per-hypothesis sample sizes and the proportions of selected
hypotheses mt/m1 (for m1→∞ and N =dm1)

mt+1

m1
→ �1gt +(1−�1) P�(i)=�/�,n̄1,...,n̄t { p̃(i)�gt }

nt+1 → n̄t+1= rt+1N

m̄t+1

with n̄1=n1. To control the FDR, the critical value � for the sequential p-value p̃(i) asymptotically
satisfies the equation (additionally letting �→1):

�= �1�

�1�+(1−�1)P�(i)=�/�,n̄1,...,n̄k { p̃(i)��} (10)

The asymptotic individual power is then given by �̄= P�(i)=�/�,n̄1,...,n̄k { p̃(i)��}, where � solves

(10) to control the FDR. To control the FWER, we approximate the power �̄ by setting �=�/m1.
To obtain optimal design parameters, we numerically optimize the objective function �̄ with

respect to g1, . . . ,gk−1 and r1, . . . ,rk . As in the pilot design, �̄ and the optimal parameters depend
on N , m1, � and � only via

√
N/m1 �/� and for the FWER additionally on m1 (via the rejection

boundary).

4.3. Examples of optimized experiments

Here, we present numerical optimization results for integrated and pilot designs for different
scenarios. Consider a test for m1=5000 hypotheses with a total of N =8m1=40000 observations.
At each stage, a predetermined fraction of the total observations is equally allocated to the selected
hypotheses (see Section 3). Assuming that �2=1 and that for 50 of the hypotheses the alternative
�=1 holds (i.e. �1=0.99), we computed the optimal rt and �t (resp. gt ) for pilot or integrated
multi-stage designs with up to four stages either controlling the FDR or the FWER at level �=0.05.
Table I lists the asymptotically optimal design parameters for the different designs and shows
the obtained asymptotic power values. The optimal design parameters apply to all scenarios with√
N/m1�/�=√

8 and �1=0.99 for FDR controlling procedures. Given N =40000 andm1=5000,
the per-hypothesis sample sizes are not integer but using designs with stage-wise integer sample
size (first rounded downwards and randomly choosing hypotheses where the rounded sample size
is increased by one) yields practically identical power values within the simulation error.

For all types of designs, the power increases with the number of stages. The advantage of
the integrated design over the pilot design is moderate but increases with the number of stages.
In contrast, the power difference between procedures for the control of the FWER versus the
control of the FDR decreases with the number of stages: For the four-stage design, it makes hardly
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Table I. Optimal power values and design parameters for pilot and integrated (int) designs controlling the
FDR and the FWER for N =40000, m1=5000, �1=0.99, �/�=1 and �=0.05.

Error Power in r1 in r2 in r3 in r4 in
Stages rate Design per cent per cent per cent per cent per cent �1 or g1 �2 or g2 �3 or g3

1 FWER 7.5 1
1 FDR 18.9 1

2 FWER Pilot 79.1 68.6 31.4 0.073
2 FWER Int 80.1 69.3 30.7 0.077
2 FDR Pilot 84.7 68.1 31.9 0.112
2 FDR Int 85.9 68.7 31.3 0.123

3 FWER Pilot 88.5 56.1 30.2 13.7 0.223 0.098
3 FWER Int 90.9 57.1 28.6 14.3 0.276 0.036
3 FDR Pilot 90.3 56.3 30.5 13.2 0.255 0.147
3 FDR Int 92.8 56.9 28.3 14.8 0.330 0.065

4 FWER Pilot 90.2 50.0 28.5 13.2 8.3 0.308 0.236 0.121
4 FWER Int 93.8 49.8 25.6 15.4 9.2 0.441 0.150 0.022
4 FDR Pilot 90.8 51.1 28.7 13.6 6.6 0.323 0.266 0.178
4 FDR Int 94.8 50.2 24.7 15.9 9.2 0.484 0.194 0.043

The optimizations were performed with the function ‘optim’ in the R-program [15] using the method
‘L-BFGS-B’ of Byrd et al. [17].

any difference if one controls the FDR or the FWER. The optimal design parameters are fairly
equal. For all scenarios, the optimized per-hypothesis sample size in the first stage is rather small
and increases in the later stages. The expected number of hypotheses under observation clearly
decreases with increasing stage.

These qualitative features persist also for other scenarios. Figure 1 shows optimal power values
for �1={0.99,0.97}, �={0.5,1} and experiments with 1–4 stages. Clearly, the single-stage power
is the same for pilot and integrated designs. To assess finite sample properties, we performed a
simulation study using asymptotically optimal design parameters and the corresponding rounded
sample sizes as specified in Section 3. The simulated power is practically identical to the asymptotic
power (105 simulation runs).

4.4. Robustness of multi-stage designs

The optimal design parameters depend on �/� and �1, which are typically unknown. We investi-
gated the robustness of the design with respect to misspecifications in the planning phase. Consider
an optimal three-stage design for �/�=0.5 and �1=0.99. The lines in Figure 2(a) and (b) show
the impact for the power values if �/� deviates from these assumptions. For this purpose, the
difference between the optimal power that could be obtained if the trial would have been planned
based on the actual values of �/� and �1 of each scenario and the non-optimal design (applying the
parameters optimal for �/�=0.5) is shown. The plots (c) and (d) in Figure 2 show the deviation
between optimal and non-optimal power values for the optimal design for deviations of �1. The
plots indicate that designs controlling the FDR are more robust than those controlling the FWER,
particularly for decreasing �1. Additionally, deviating from the optimal values of r1,r2, . . . has
only a small impact on the integrated design controlling the FDR, a larger impact on the integrated
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Figure 1. Asymptotically optimal power values for experiments with 1–4 stages. Results
for the pilot and the integrated designs controlling the FWER and the FDR are given

for N =40000, m1=5000 and �=0.05.

design controlling the FWER but causes a striking decrease in power for the pilot designs (data
not shown).

4.5. Extension to the case of unknown variance and two-sided hypotheses

If the variance is unknown, the group sequential t-test can be applied. However, the exact compu-
tations of group sequential p-values for the t-test are numerically difficult. As an alternative we
propose an approximate procedure using the critical values from the model with known variances
in Section 2 applied to the p-values of the t-test at each stage [18].

For the case of two-sided hypotheses, sequential p-values are computed as in (5) with p̃(i)
t (i)

replaced by the respective two-sided p-value. Similarly, the critical boundary is calculated from
equation (4) adapted to the two-sided case.

4.6. Real data application

We emulate a two- and three-stage design based on a data set from an experiment by Tian
et al. [19], resulting from the comparison of gene expression measurements of 36 patients with
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Figure 2. Deviation from optimal power. The differences between optimal and non-optimal
designs are given for pilot and integrated designs controlling the FDR or the FWER, respec-
tively, for N =40000, m1=5000 and �=0.05 and varying values of �1 and �/�. For (a) and
(b) for each scenario the optimal parameters for �/�=0.5, �1=0.99 are applied, for (c) and

(d) the optimal parameters for �/�=1, �1=0.99.

bone lytic lesions with a control group of equal size without such lesions. The original data were
generated with Affymetrix Human U95A chips, each containing 12 625 probe sets. We used the
post-processed data published by Jeffery et al. [20].

In the re-analysis, we assumed that the total number of gene expression measurements is limited
to only 8×12625 measurements per group. Thus, in a single-stage design, the gene expressions
from all 12 625 probe sets would be available for 8 patients. Performing a two-sided two-sample
t-tests controlling either the FWER or the FDR at level �=0.05, this single-stage analysis showed
no significantly different gene expression measurements between the two groups. Below we
compare this single-stage test with multi-stage procedures (also two-sided).

4.6.1. Two-stage design. We consider a two-stage pilot design with parameters r1=0.66 and
�1=0.1 and an integrated design with r1=0.66 and �̃1=0.1. Thus, we have equal sample sizes
and selected probe sets for the pilot and the integrated design. We include 5 patients per group in
the first stage. For each of these patients, all m1=12625 probe set gene expression measurements
are taken. Thus, r1=0.625. For the second stage, only probe sets with a two-sided p-value below
�̃1=�1=0.1 are selected. In this data set, these are m2=1502 probe sets. The number of patients
at the second stage is given by [(8−5)×12625]/1502=25.2. We assume that for (rounded off)
25 patients per group a microarray chip with the 1502 selected probe set was designed. In the
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Table II. Number of significant probe sets for a two-stage and a three-stage design for the integrated and
the pilot designs controlling the FWER and the FDR with �=0.05.

# Stages Pilot FWER Pilot FDR Integrated FWER Integrated FDR

2 2 74 14 107
3 4 52 26 195

For the two-stage design, r1=0.625 and �1= �̃1=0.1; for the integrated three-stage design r1=0.5, r2=0.3,
�̃1=g1=0.25, g2=0.03, whereas for the pilot design �1=0.25 and �2=0.13.

re-analysis, we use the measurements of the selected probe sets taken from the full arrays (discarding
the measurements from all other probe sets). Table II shows the number of rejections for the pilot
and integrated designs controlling the FWER and the FDR.

4.6.2. Three-stage design. We consider a three-stage pilot design with parameters r1=0.5,
�1=0.25,r2=0.3 and �2=0.13 and an integrated design with parameters r1=0.5,g1= �̃1=0.25,
r2=0.3 and g2=0.03. In the first stage, the sample size and selected probe sets are the same
for the pilot and integrated designs. This also holds for the second but not for the third stage. In
the first stage, 4 patients are included where all m1=12625 expression measurements are taken
for each patient. For m2=3297 probe sets, the respective first-stage p-value falls below �1= �̃1.
In the second stage for n2=0.3×8×12625/m2=9 (which is rounded off) patients per group, a
chip with the selected genes is designed. The algorithm to select probe sets for the third stage
is different for the integrated and the pilot designs. In the pilot design, p-values are calculated
only from the second-stage data. In the example, m3=883 p-values fall below �2=0.13, which
results in a third-stage sample size of n3=22 patients. For the integrated design, we first compute
the critical value �̃2. This gives �̃2=0.053. In the integrated design, all probe sets whose p-value
calculated from the first and second stage falls below �̃2 are selected for the third stage. In this
scenario, m3=916, which also results in n3=22 patients for the third stage.

It can be seen from Table II that for this example the integrated design appears to have a much
larger power than the pilot design. In addition, the difference between the control of the FDR
and that of the FWER is pronounced. Finally, the three-stage design gives a distinct improvement
over the two-stage design. Clearly, the effect size and the proportion of true null hypotheses are
unknown in the real data set. Yet, calculations in Section 4.4. showed that designs are rather robust
against such misspecifications in these parameters. However, the misspecifications for this example
are different: Due to the restricted number of patients in the real data set from the literature (36 per
group), we could not perform an optimization as in Section 4 and the design parameters r1, r2, r3,
�1 and �2 were chosen so that the sample sizes in the second and third stages did not exceed the
available number of observations in the data set. Asymptotic numerical power calculations show
a clear superiority of the integrated design controlling the FDR compared with the pilot design
and compared with the FWE controlling procedure when choosing design parameters that lead to
too small sample sizes in the last stage of the trial. In contrast if, e.g. in the two-stage design a
smaller value of r1 is chosen, the differences between the integrated and the pilot designs as well
as the difference between designs controlling the FDR and the FWER decrease. This effect also
occurs, if �1 is decreased. Additionally, for a very large number of hypotheses m1, the discrepancy
between procedures controlling the FDR and the FWER becomes larger because for m1→∞ (and
N increasing proportionally) the power of the FWER controlling procedure tends to zero. However,
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even for the number of hypotheses as large as m1=105, the power of the FWER controlling
procedures in the optimal design hardly decreases compared with the scenarios in Table I (ca. 3
per cent decrease in power for the two-stage design, 1 per cent for the three-stage design).

5. DISCUSSION

Multi-stage procedures are of increased interest in gene-expression or gene-association studies
since, e.g. the technical equipment for designing individual micro-arrays have become available. For
two-stage designs, remarkable improvements in the power to detect influential markers have been
shown by different authors. In this paper, we have investigated the statistical properties of multi-
stage designs either controlling the FDR or the FWER. Two different concepts of the sequential
designs have been considered: In the pilot design, the test decisions are exclusively derived from
the sample at the last stage. The previous stages are only used to screen the promising markers that
are then tested at the final stage. For the integrated design, the test decisions for the hypotheses
selected for the last stage are based on the observations from all stages. The main goal was to
construct asymptotically optimal multi-stage designs and investigate their behavior depending on
the concept (pilot versus integrated design), the type of error control (FDR versus FWER), the
number of stages and the a priori assumptions (proportions of true null hypotheses, effect size
under the alternative). Generally, going from two to three stages may lead to a worthwhile increase
in power, both for the pilot and the integrated designs and for the control of the FDR or the FWER.
As expected, the improvement when going from three to four stages decreases and may not be
worthwhile considering the logistic and computational burden arising from a further increase in
the number of stages. In all scenarios, the number of hypotheses decreases and the per-hypothesis
sample size increases strikingly with increasing stage and the last stage power is nearly 1.

The difference in the statistical properties between the optimal pilot and integrated design
is surprisingly small in designs with more than two stages. However, if in the planning phase
misspecifications occur so that a non-optimal design is applied for an experiment the loss of power
of the pilot design may become noticeably larger than for the integrated design. This is plausible
because the integrated design uses information from all stages to make the decision, whereas the
decision in the pilot design may be based on a non-optimal last-stage sample size.

This result is emphasized by the real data application. Owing to the lack of knowledge of �1 and
the effect sizes, we generally will not apply the optimal parameters. Here, we found that the inte-
grated design leads to more rejections than the pilot design. In addition, the multi-stage procedure
based on the FDR is more robust than that based on the FWER, which here leads to a pronounced
increase in power. The basic result that screening leads to a high improvement in the power as
compared with conventional single-stage designs can be seen in the application to the real data set.

For optimal designs, we found a further interesting result for increasing number of stages: The
difference in power of the optimal designs controlling the FDR or FWER, respectively, becomes
smaller (both for the pilot and the integrated designs). The optimal design for controlling the FDR
selects more hypotheses for the final stage by applying higher critical boundaries �i at earlier
stages than the optimal design for controlling the FWER.

We also investigated the case of unknown variances and distributed alternatives as in [5] and in
all simulations the average FDR was very close to the nominal level (data not shown). Optimized
designs where the total number of observations is constrained and the proportion of the total
number of observations allocated to each stage is equally distributed among the selected hypotheses
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(leading to random sample sizes) showed similar power as designs where deterministic stage-wise
per-hypothesis sample sizes are applied.

The integrated design can be easily extended to allow for early rejection of null hypotheses
[21]. Yet, for the considered scenarios where �1 is close to one, the possibility of early rejection
gave no noticeable improvement in power. Moreover, it makes sense to continue with promising
hypotheses to confirm early significant results with a larger sample.

Under optimal conditions, our investigations show that the crucial point is not the choice of the
error rate, the type of design (integrated or pilot) or the number of stages (three or four stages),
but skipping non-promising hypotheses in the early phases of the experiment. Then test decisions
among the selected hypotheses can be based on considerably larger sample sizes than in the single-
stage design distributing the total number of observations equally among all candidate markers.
This is in line with the finding that even randomly dropping hypotheses for a single-stage design
may increase the power in case of many hypotheses and limited resources [22].

APPENDIX A

A.1. Proof of Theorem 1

The proof is given in two steps. First, for the case of deterministic stage-wise per-hypothesis sample
sizes, we derive the joint distribution of the sequential p-values and a random variable specifying
the stage where the hypothesis is dropped. Then (Theorem 1), we prove that this distribution is
the same in the design with random stage-wise per-hypothesis sample sizes. This is shown via
modified designs, where the stage-wise per-hypothesis sample sizes depend only on the outcomes
of alternative hypotheses.

Without limitation of generality, we assume that for the first i0 hypotheses the null hypothesis
holds. For the remaining hypotheses, the alternative is true. Let p̃=( p̃(i))

i0
i=1 denote the vector of

sequential p-values corresponding to the true null hypotheses. For a set A we denote the i-ary
Cartesian product by Ai and the characteristic function by 1{A}.

A.1.1. On the distribution of the sequential p-value for fixed stage-wise per-hypothesis sample
sizes. Define the random variables �(i) that denote the stage where hypothesis i stops. Set �(i) =k
if the trial continues to the final stage. Let s=(�(i))

i0
i=1.

Lemma 1
In a trial with fixed stage-wise per-hypothesis sample sizes under Hi for all vectors of time points
s=(s(i))

i0
i=1∈{1, . . . ,k}i0 and all real vectors q=(qi )

i0
i=1∈[0,1]i0 , we have P({p̃�q}∩{s=s})=∏i0

i=1 b(q
(i),s(i)), where, for t=1, . . . ,k,

b(x, t)=

⎧⎪⎨⎪⎩
0 if x<gt
x−gt if x ∈(gt ,gt−1]
gt−1−gt if x>gt−1

Proof
By (5) {�(i) = t}={ p̃(i) ∈(gt ,gt−1]}. Since the p̃(i) are uniformly distributed, P( p̃(i)�x,�(i) = t)=
b(x, t). Since the p-values are independent, the result follows. �
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A.1.2. The case of fixed overall number of observations and random per-hypothesis sample sizes.
Let (�,P) denote a probability space and define anm1-dimensional stochastic process (nt , z

(i)
t )

m1
i=1,

t=1, . . . ,k, where nt denotes the per-hypothesis sample size in stage t and z(i)t =s(i)
t /(�(i) √nt )

the z-statistic of hypothesis i computed from the observations at stage t . Let (Ft )
k
t=1 denote the

filtration generated by (nt , z
(i)
t )

m1
i=1, t=1, . . . ,k. For t=1 the number of considered hypotheses m1

and consequently n1=r1 N/m1 and by (4) �̃1 are constants. Consequently, the z
(i)
1 are independent

and N(�i
√
n1,1) distributed. For t>1 the mt and nt are defined recursively by

mt =
m1∑
i=1

min
j=1,...,t−1

1{1−�(
∑ j

l=1 z
(i)
l

√
nl/ñ j )��̃ j }

where ñt =∑t
j=1 n j gives the cumulated sample size until stage t . Note that mt ,nt =rt N/mt and

by (4) also �̃t areFt−1-measurable and the z(i)t , i=1, . . . ,m1 conditional onFt−1 are independent
and N(�i

√
nt ,1) distributed. Define the stopping time for hypothesis i :

�(i) =min

{
t

∣∣∣∣1−�

(
t∑

l=1
z(i)l

√
nl/ñt

)
>�̃t

}
where �(i) =k if no stopping boundary is crossed and set s=(�(i))

i0
i=1.

Theorem 1
Assume that the data are independently distributed across hypotheses. In the integrated design with
fixed overall number of observations (and random per-hypothesis sample sizes), the sequential
p-values p̃(i), i=1, . . . , i0, corresponding to true null hypotheses are independent and uniformly
distributed.

Proof
We show that in the experiment with random per-hypothesis sample sizes for all s∈{1, . . . ,k}i0
and q∈[0,1]i0

P({p̃�q}∩{s=s})=
i0∏
i=1

b(q(i),s(i)) (A1)

By Lemma 1 this implies that the joint distribution of the p-values and stopping times of true null
hypotheses is the same as in the case of deterministic sample sizes. Hence, this holds also for the
joined distribution of the p-values alone. This proves the theorem. To prove (A1) we will define
a modified experiment where the sample sizes are independent of the outcomes from the data of
the true null hypotheses.

As above, let s∈{1, . . . ,k}i0 denote a realization of s and define the stopping time �s to be the
first time point t where for any true null hypothesis i , the stopping indicator 1{�(i)�t} differs from
the stopping indicator 1{s(i)�t} (corresponding to stopping at stage s(i)). More formally,

�s =min

{
t

∣∣∣∣ max
i=1,...,i0

|1{�(i)�t}−1{s(i)�t}| �=0

}
where �s =k if |1{�(i)�t}−1{s(i)�t}|=0 for all t and i . By definition, �s is a stopping time.
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To specify the modified experiment consider an m1-dimensional stochastic process (n′
t , z

′
t
(i)

)
m1
i=1,

t=1, . . . ,k, defined as follows: for all t��s let (n′
t , z

′
t
(i)

)
m1
i=1=(nt , z

(i)
t )

m1
i=1. For t>�s we set

n′
t =

rt N

m′A
t +∑i0

i=1 1{s(i)�t}
(A2)

where m′A
t denotes the number of alternative hypotheses that have been continued to stage t in

the modified experiment. For t>�s , z′t
(i) are defined as the standardized stage-wise means of n′

t -
independent observations for each continued hypothesis. Hence, the sample sizes are determined
as if the stopping times for the true null hypotheses were equal to s(1), . . . ,s(i0). Note that actually
also for t��s n′

t is given by (A2). This follows, since nt =rt N/(mA
t +mN

t ) and for t��s we have
mA

t =m′A
t and mN

t =∑i0
i=1 1{s(i)�t}. Here mA

t and mN
t denote the number of alternative and true null

hypotheses in the original experiment that are continued to stage t . Thus, in the modified experiment
the sample sizes are defined by (A2) for all t=1, . . . ,k. Hence, in the modified experiment, the
sample sizes are independent of the z-statistics of the true null hypotheses.

Let p̃′(i) denote the sequential p-values in the modified experiment and let �′(i) denote the
corresponding stopping times, i.e. �′(i) denotes the stopping stage for hypothesis i in the modified
experiment. The sequential p-values p̃(i) and p̃′(i) are F�(i) and F�′(i) measurable and {s=s}
is F�s -measurable. Thus, since for t��s the modified and the original stochastic processes are
identical, it follows that ( p̃(i))

i0
i=11{s=s} and ( p̃′(i))i0i=11{s=s} are F�s measurable. Now, again since

for t��s , the modified and the original stochastic processes are identical and since {s=s}={s′ =s}
it follows that

P({p̃�q}∩{s=s})= P({p̃′�q}∩{s=s}) (A3)

Since in the modified experiment the sample sizes and z-statistics corresponding to true null
hypotheses are independent, the joined distribution of the p-values corresponding to true
null hypothesis is in the modified experiment the same as in the experiment with deterministic
per-hypothesis sample sizes (as derived in Lemma 1). Hence,

P({p̃′�q}∩{s=s})=
i0∏
i=1

b(q(i),s(i))

Together with (A3) this implies (A1). �
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