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SUMMARY

Adaptive test designs for clinical trials allow for a wide range of data driven design adaptations using
all information gathered until an interim analysis. The basic principle is to use a test statistics which is
invariant with respect to the design adaptations under the null hypothesis. This allows for a control of
the type I error rate for the primary hypothesis even for adaptations not speci�ed a priori in the study
protocol. Estimation is usually another important part of a clinical trial, however, is more di�cult in
adaptive designs. In this research paper we give an overview of point and interval estimates for �exible
designs and compare methods for typical sample size rules. We also make some proposals for con�-
dence intervals which have nominal coverage probability also after an unforeseen design adaptation and
which contain the maximum likelihood estimate and the usual unadjusted con�dence interval. Copyright
? 2005 John Wiley & Sons, Ltd.
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estimate; mean unbiased estimate; median unbiased estimate

1. INTRODUCTION

In the last two decades �exible or adaptive designs have been suggested which allow for mid-
trial design modi�cations that are based on the unblinded interim data without compromising
the overall type I error rate [1–10]. Examples for design modi�cations are the adaptation and
reallocation of sample sizes, the adaptation of the study goal (non-inferiority and superiority)
[11, 12], the test statistics [13–17], and the number of interim analyses [6–9], as well as the
selection and addition of treatment arms, endpoints and subgroups [2, 18–20]. The crucial
point is that the adaptations need not be speci�ed in advance in order to keep the type I
error rate at the pre-speci�ed level �. This allows to deal with the situation where a mid-trial
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inspection of the data reveals violations of the a priori assumptions relevant for the choice
of the study design.
The basic method of adaptive tests is to use a test statistic whose null distribution is

invariant with respect to design modi�cations. This method allows controlling the type I error
rate of the signi�cance test. Estimation is usually another important part of a clinical trial
which, however, is more di�cult in a �exible design. The distribution of an estimator might
be adaptation invariant for a speci�c hypothesis (e.g. the null hypothesis) but not for all
parameter con�gurations simultaneously, otherwise, design adaptations are unlikely to have
an impact on the performance of the trial. Nevertheless, point estimators and con�dence
intervals have been suggested in the recent years [5, 8, 12, 21–28]. We give an overview on
these methods, make some new proposals, and compare the methods numerically for typical
sample size adaptations. We also consider the maximum likelihood estimate which turns out
to perform fairly good in terms of the mean square error (MSE) after changing sample sizes.
Therefore, we introduce new �exible con�dence intervals around the maximum likelihood
estimate.
Since usual �xed size sample point estimates and con�dence intervals are unbiased if sample

sizes remain as pre�xed we can focus on sample size adaptations. We further assume that
recruitment is terminated at the interim analysis in a �exible and unscheduled way. For
rejecting the null at the interim analysis, however, one must pre�x an interim hypothesis test,
otherwise, the null must be accepted when stopping the trial. Note that our results remain
relevant for adaptive interim analyses with a selection of treatment groups as termination of a
treatment group means to stop recruitment for this group. For didactical reasons most sections
start assuming that there is no interim stopping before dealing with the general case. For
simplicity we assume that the study goal is to test H0 :�=0 versus the one-sided alternative
H1 :�¿0 for the mean � of a normal response with known variance �2. Extensions will be
discussed in Section 4.4.

2. THE PRINCIPLE OF ADAPTIVE DESIGNS

Flexible designs are based on the following general invariance principle: for the �nal test
decision one combines stagewise statistics whose common null distribution is invariant with
respect to mid-trial design modi�cations. We will illustrate this general principle by the so-
called weighted z-score method which combines stagewise z-scores [4, 5, 29].

2.1. Weighted z-score method without interim hypothesis test

We pre�x weights w1; w2¿ 0 with w21 + w
2
2 = 1 for a combination of stagewise z-scores. We

further pre�x the �rst stage sample size n1. After recruiting n1 patients, we compute the �rst
stage z-score z1 =

√
n1 �x1=� with �x1 the mean of the �rst stage sample. Based on this and=or

any other internal or external information we choose the second stage sample size ñ2 and
recruit additional ñ2 patients. For simplicity let us �rst assume that H0 is not tested at the
interim analysis and hence always ñ2¿ 1. Often there will be a pre-planned sample size n2
for the second stage which, however, might be adapted at the interim analysis, so that ñ2 �= n2
is possible. At the end of the second stage we compute z2 =

√
ñ2 �x2=� from the second stage

sample mean �x2, and we build the weighted z-score z̃=w1 z1 +w2 z2. A natural choice of the
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weights is wi=
√
ni=(n1 + n2) where n2 is the pre-speci�ed second stage sample size. This

weighted z-score has the striking property that if no adaptation is performed (ñ2 = n2) it is
equal to the usual �xed size sample z-score z=

√
n1 + ñ2 �x=�=(

√
n1 z1 +

√
ñ2 z2)=

√
n1 + ñ2

where �x is the overall mean (combining the �rst and second stage sample). However, if
ñ2 �= n2 then z̃ is in general not equal to z.
The null distribution of the weighted z-score z̃ is standard normal independently from the

adaptations. To see this, notice that the conditional distribution of z2 given z1 and ñ2 is standard
normal under the null hypothesis �=0, independently from our adaptive choice of ñ2¿ 1.
Therefore, z1 and z2 are independently standard normal under the null. Since the weights wi
are �xed, we get E�=0(z̃)=0 and Var�=0(z̃)=w21 + w

2
2 = 1. Hence, rejecting H0 if z̃¿ z� for

the (1− �)%-percentile z� of the standard normal distribution gives a test for H0 with type I
error probability equal to � independently from the adaptations.

2.2. Weighted z-score method with interim hypothesis test

If at the interim analysis the data indicate that the treatment is ine�ective or that the chance
to reject H0 at the �nal analysis is small even after extending sample sizes then one should
stop the trial for futility and accept H0. Such an action does not in�ate the type I error rate
and hence can always be done even if unspeci�ed in the protocol.
For the possibility of rejecting the null at the interim analysis without in�ating the nominal

level the weighted z-score method need to be modi�ed. This can be done by pre-specifying
rejection levels �1; �2¡� and rejecting H0 at the interim analysis if z1¿ z�1 and at the
�nal analysis if z̃¿ z�2 (cf. Reference [5]). Since the covariance between z1 and z̃ equals
Cov�=0(z1; z̃)=w21 independently from the adaptations, the nominal level � is met if choosing
�1 and �2 from a classical two stage group sequential design with interim information fraction
t1 =w21 (cf. Reference [30]).

2.3. Sample size assessment rules

We have investigated the performance of estimators and con�dence intervals for several dif-
ferent sample size assessment rules given in terms of r̃= ñ2=n1. The second stage sample size
r̃ is assumed to be restricted by some pre�xed maximum and minimum, i.e. r̃=0 if stopping
at the interim analysis and 0¡rcont6 r̃6 rmax¡∞ if continuing with the second stage. We
let rmin denote the overall minimum of r̃ which equals rcont in a trial excluding early stopping
and 0 otherwise. The preplanned second stage sample size is denoted n2.
We will, in particular, consider the predictive power rule, where one uses the weighted

z-score for testing H0 and assesses ñ2 for a pre�xed conditional power P�̂1 (reject H0 | z1)
of 1 − �c at the estimated alternative �̂1 = max(0; �x1) (cf. References [3, 5, 10, 31–34]). The
trial is stopped for futility if z16 z�0 for some �0¿� and=or stopped with a rejection of H0
if z1¿ z�1 for some �1¡�. Accounting for rcont and rmax this gives the sample size rule

r̃=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if z16 z�0 or z1¿ z�1

rmax if z�06 z16 0

max

[
rcont ;min[rmax;

(
z�=w2 − z1 w1=w2 + z�c

max(0; z1)

)2]
if max(0; z�0)¡z1¡z�1

(1)
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For illustrative purposes we also will consider designs with �0 = 1 and �1 = 0 in which case
there is no early stopping (rmin = rcont¿0).

3. POINT ESTIMATION IN FLEXIBLE DESIGNS

3.1. Maximum likelihood estimate

Since ñ2 is determined at the interim analysis, ñ2 is formally a stopping rule. Hence the
likelihood of the data is given by

∏ñ2
i=1 f(xi) with f(x) the density of a single observation, and

the maximum likelihood estimate of � is the overall mean �x=(n1 �x1 + ñ2 �x2)=(n1 + ñ2)= (�x1 +
r̃ �x2)=(1+r̃). If sample sizes are reassessed then �x can become mean biased. Liu et al. [24] give
a simple formula for the mean bias of �x by noticing that �x= ṽ �x1+(1− ṽ) �x2 with ṽ=1=(1+ r̃).
Since given ñ2 the conditional mean of �x2 is �, E�(�x)−�=Cov�(ṽ; �x1); see Appendix A.1. If,
for example, the sample size decreases with increasing �x1 then the covariance Cov�(ṽ; �x1) is
positive and hence also the bias. To know the bias, we would need to know ñ2 at all interim
outcomes. Flexible designs aim to deal with the case where ñ2 does not follow a pre-�xed rule
and, obviously, the mean bias is unknown in this case. However, as shown in Appendix A.1,
the absolute mean bias is always bounded by |E�(�x) − �|6 0:4 (�=√n1) {(1 + rmin)−1 − (1 +
rmax)−1} which is at most 40 per cent of the standard deviation of the �rst stage mean. The
variance is another important property of an estimator and is given in Appendix A.1. From
the formula in the Appendix it can be seen that it also depends on the rule for ñ2 and hence
it is unknown as well.

3.2. Mean unbiased estimates for designs with rmin¿0

If the trial is always continued beyond the interim analysis, there is a simple mean unbiased
estimate for � [24, 27]. Pre�xing a number 06 u6 1, the estimate

x̂u= u �x1 + (1− u) �x2 (2)

is mean unbiased for �, since �x1 and �x2 are unbiased and hence E�(x̂u)= u �+ (1− u)�=�.
If u= n1=(n1 + n2) for the pre-planned n2, and ñ2 = n2 is as pre-planned, then x̂u equals the
maximum likelihood estimate �x. If ñ2 �= n2, however, x̂u and �x are di�erent in general. As
shown in Appendix A.1, the variance of x̂u is Var�(x̂u)= (�2=n1) {u2 + (1− u)2 E�(1=r̃)} and
depends on the rule for r̃. Note that the �rst stage mean �x1 = x̂1 (u=1) has mean � and
variance �2=n1 independently form the adaptations. The mean of the �rst nmin = n1 (1 + rmin)
observations, i.e.

�xmin =
nmin∑
i=1
xi=nmin (3)

is another mean unbiased estimate with invariant variance �2=nmin. Clearly, this estimate is
not of the form (2) and is more precise than �x1.

3.3. Median unbiased estimates for designs with rmin¿0

Another suggestion is to use an estimate which has median equal to � independently from the
adaptations [8, 26, 27]. Median unbiased point estimates can be constructed from the invariance
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principle of adaptive tests. If rmin¿0, i.e. the trial is always continued with the second stage,
then

x̂m= ũ �x1 + (1− ũ) �x2 with ũ=
w1

√
n1

w1
√
n1 + w2

√
ñ2
=

w1
w1 + w2

√
r̃

(4)

is median unbiased. This follows from (x̂m − �) (w1 √
n1 + w2

√
ñ2)=�=w1

√
n1 ( �x1 − �)=� +

w2
√
ñ2( �x2 −�)=�, where the right side is standard normal independently from the adaptations

by the same reason why z̃ is standard normal under the null hypothesis. Cheng [28] derived
(4) by the method of moments. Note that the weight ũ in (4) depends on the weight wi and
the choice of ñ2. Like for the maximum likelihood estimate, mean bias and variance of x̂m
depend on the adaptation rule and hence are unknown in general; see Appendix A.1.

3.4. Point estimation in designs with rmin =0

We now consider the case where rmin =0, i.e. the trial can be stopped at the interim anal-
ysis (in an unscheduled way). Note that the discussion of the maximum likelihood esti-
mate in Section 3.1 covers this case. With rmin =0 the absolute mean bias is bounded by
0:4 (�=

√
n1) {1− (1+ rmax)−1} whatever sample size rule is used. It is shown in Appendix A.1

that the bias is maximized when choosing r̃=0 if �x1¿� and r̃= rmax otherwise. The same
bias is achieved in a two stage group sequential design with minimum and maximum sample
size n1 and n1 (1+rmax), respectively, and interim rejection rule �x1¿ z�1 �=

√
n1 if the true mean

is �= z�1 �=
√
n1 (which e.g. in a one-sided Pocock design [30] at level �=0:025 equals 1.04

times the preplanned e�ect size for a power of 80 per cent). Hence, the maximum mean bias
is in a �exible two stage design in general not larger than in a conventional group sequential
design.
Also x̂m is formally de�ned for r̃=0 and equals �x1 in this case, however, will in general

become median biased if the trial can be stopped at the interim analysis. Median unbiased
point estimates for general two- and multi-stage �exible designs with stopping rules are given
in Reference [8], however, only for trials where the stopping rule is mandatory and pre�xed.
If u¡1 the mean unbiased estimate x̂u is not de�ned for r̃=0. Only the �rst stage mean

�x1 (u=1) is de�ned and mean unbiased for rmin =0.

3.5. Comparison of point estimates

Obviously, the estimates �x (maximum likelihood), �x1 (�rst stage mean), �xmin (mean of �rst
nmin patients), x̂u (mean unbiased estimate) and x̂m (median unbiased estimate) converge to
� in probability if n1 → ∞ and ñ2 → ∞ in probability. The maximum likelihood and median
unbiased estimates are consistent in an even stronger sense: they converge to � also if any
one of the stagewise sample sizes becomes in�nite whereas the other remains bounded. This
stronger consistency property is not shared by the mean unbiased estimates �x1, �xmin, and x̂u.
Figure 1 gives plots of mean bias and square root of MSE in units of �=

√
n1 and in

dependence of the non-centrally parameter �1 =
√
n1 �=� of the �rst stage z-score z1. Such

plots are invariant with respect to � and n1 but depend on the rule for r̃ and on the choice of
the weights u and w1 for x̂u and x̂m. In Figure 1(a) we have used the predicitive power rule of
Section 2.3 with �0 = 1 and �1 = 0 (no early stopping), rcont = 0:1 and rmax =2. In Figure 1(b)
we used w21 = u=0:5 and �0 = 0:5, �1 = 0:0026, rcont = 0:1 and rmax =5. The interim rejection
level �1 is from a one sided O’Brien and Fleming [30] design at overall level �=0:025 without
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(a)

(b)

Figure 1. Mean bias and root of mean square error in units of �=
√
n1 and in dependence of the

non-centrally parameter �1 =
√
n1 �=� of z1 for the maximum likelihood estimate �x (solid line),

mean and median unbiased estimates x̂u (dashed line) and x̂m (dotted line) with w21 = u=0:5, when
using the predictive power rule for r̃ with (a) �0 = 1, �1 = 0, rmin = 0:1, rmax = 2, and (b) �0 = 0:5,
�1 = 0:0026, rcont = 0:1, rmax = 5. The right vertical line is through �1 =

√
n1 �=� where �=� is the

80 per cent power alternative of the usual �xed size sample z-test with sample size n1=u=2n1.
The horizontal dashed-dotted lines gives the standard deviation of the mean unbiased estimate �xmin

using the �rst n1 (1 + rmin) observation.

accounting for the early acceptance boundary z�0 (to keep the futility stopping optional). Since
the estimate x̂u is not de�ned for this rule it is not considered in Figure 1(b). The vertical
line through �1 = 0 marks the null hypothesis, the second vertical line is through �1 =

√
n1 �=�

with �=� such that the one-sided �xed size sample z-test with sample size n1=u=2n1 has
power 80 per cent. Using this �1 instead of the estimate max(0; z1) in the conditional power
rule (1) we have observed very similar mean biases and mean square errors.
The �gures (and similar numerical investigations) indicate that the mean bias of median un-

biased and maximum likelihood estimate is usually small compared to their MSE. Figure 1(a)
also indicates that the mean unbiased estimate x̂u, although mean unbiased, may perform bad
in terms of the MSE. In particular, the MSE of x̂u can become much larger than the MSE of
�xmin represented by the horizontal slashed-dotted line in Figure 1(a), or may even be larger
than the MSE of �x1 which is 1 in units of �2=n1. As mentioned before, �xmin and �x1 are mean
unbiased and have adaptation invariant variances (equal to MSE), however, they use only
part of the data. For this reason we do not recommend to use �x1, �xmin or x̂u. The MSE of
the median unbiased estimate can exhibit a similar adverse property which, however, is much
less pronounced than for the mean unbiased estimate. It seems ignorable in our examples, in
particular, in Figure 1(b) when using a stopping rule. We have also considered the weights
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w21 = u=0:25 and w
2
1 = u=0:75 (with the according conditional power rule) and have made

very similar observations.

4. FLEXIBLE CONFIDENCE INTERVALS

4.1. Flexible con�dence intervals centred at the median unbiased estimate

In �exible trials the classical con�dence interval CI= (�x − � z�=
√
n1 + ñ2; �x + � z�=

√
n1 + ñ2)

can have coverage probability less than 1− 2� for the same reasons why the na��ve z-test for
H0 :�=0 can have type I error probability larger than �. Hence CI is not a valid con�dence
interval in �exible designs. However, by the duality between con�dence sets and hypothesis
tests, the invariance principle can be used to construct �exible con�dence intervals which have
coverage probability of at least 1− 2� (cf. References [5, 8, 12, 22, 24–28]). In the following
we illustrate this method for the weighted z-score test. Again we �rst focus on trials which
are never stopped at the interim analysis (rmin¿0) and consider trials with rmin =0 afterwards.

4.1.1. Trials with rmin¿0. We pre�x weights w1; w2¿ 0 with w21 +w
2
2 = 1 and exclude a pa-

rameter value � if and only if w1 z1�+w2 z2�¿ z� with z1�=
√
n1 ( �x1−�)=� and z2�=

√
ñ2 ( �x2−

�)=�. Since this is the rejection rule of an adaptive level � test for testing the parameter
value �, the set {� :w1 z1� + w2 z2�¡z�} has coverage probability 1 − � independently from
the adaptations. This set can easily be inverted to the one-sided interval (x̂m − � z� (w1 √

n1 +
w2

√
ñ2)−1;∞). Similarly, a two-sided �exible con�dence interval at level 1 − 2� is

de�ned by

FCIm=
(
x̂m − � z�

w1
√
n1 + w2

√
ñ2
; x̂m +

� z�
w1

√
n1 + w2

√
ñ2

)
(5)

Obviously, this con�dence interval is symmetric around the median unbiased estimate x̂m.
Furthermore, FCIm excludes 0 if and only if the adaptive test for H0 :�=0 based on the
weighted z-score z̃ with the same weights as in z̃� rejects H0. If no sample size adaptation
is performed (r̃= r) then FCIm is equal to the classical con�dence interval CI. One should
also note that the coverage probabilities of FCIm are exactly 1 − 2� independently from the
adaptations (as the type I error probability of the dual one-sided signi�cance tests equal �).

4.1.2. Trials with rmin =0. In Reference [5] the repeated con�dence interval approach of
Jennison and Turnbull [35, 36] is extended to �exible designs. Here one uses the weighted
z-score method with some pre�xed �rst and second stage rejection levels �1 and �2 satisfying
P�(z1�¿ z�1 or z̃�¿ z�2)= � (cf. Section 2.2). One excludes � at the interim analysis if
z1�¿ z�1 , and at the second stage if z̃�¿ z�2 . Inverting these rejection rules for the �rst and
second stage analysis, respectively, gives the sequential �exible con�dence interval

SFCIm=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�x1 − � z�1√

n1
; �x1 +

� z�1√
n1

)
if r̃=0

(
x̂m − � z�2

w1
√
n1 + w2

√
ñ2
; x̂m +

� z�2
w1

√
n1 + w2

√
ñ2

)
if r̃¿0

(6)
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which is centred at the median unbiased estimate x̂m and extends (5) to trials with
rmin =0.
Since P�({r̃=0; z1�¿ z�1} ∪ {r̃¿0; z̃�¿ z�2})6P�(z1�¿ z�1 or z̃�¿ z�2)= �, the interval

SFCIm has coverage probability of at least 1− 2� irrespective of the rule for r̃.
It has been demonstrated that (6) does not exhaust the level, i.e. has coverage probabilities

larger than 1 − 2� for most �. In References [8, 12, 25] �exible con�dence intervals are
constructed which exhaust the level and=or uniformly improve (6) in trials with a pre�xed
(and mandatory) stopping rule. However, these intervals are not applicable if recruitment is
stopped at the pre-scheduled interim analysis in a completely �exible way.

4.2. Flexible con�dence intervals containing the classical con�dence interval

We have seen in Section 3.5 that the maximum likelihood estimate �x is a fairly good point
estimator also in the adaptation case. Additionally, �x is the posteriori mean of � when using
a �at prior. Hence, it is worthwhile to ask for con�dence intervals which always have �x in
its interior. We next introduce such �exible con�dence intervals by building intervals which
contain the classical interval CI. Note that CI has the Bayesian interpretation of being the
central 95 per cent range of the posterior distribution of � (from the �at prior) also if ñ2 is
reassessed. Moreover, a rejection of parameter values not excluded by CI may be di�cult to
communicate. (Why do adaptations allow to reject parameter values not rejected in a �xed
size sample test with similar sample size and mean?) The related property of an adaptive test
to accept H0 if the usual unadjusted test accepts is advocated in Denne [32] and Posch et al.
[33]. Note that rejecting H0 :�=0 if 0 is excluded by the �exible con�dence interval gives a
�exible level � test for H0. Hence, specifying a �exible con�dence interval there is no need
to specify a separate adaptive test for H0.

4.2.1. Enlarging SFCIm and FCLm to contain the classical con�dence interval CI . Usually
�1¡� and SFCIm contains the classical interval CI at the interim analysis, however, not
necessarily also at the second stage. To cover CI at the second stage we could take

SEFCIm =
(
min

[
x̂m − � z�2

w1
√
n1 + w2

√
ñ2
; �x − � z�2√

n1 + ñ2

]
;

max
[
x̂m +

� z�2
w1

√
n1 + w2

√
ñ2
; �x +

� z�2√
n1 + ñ2

])
(7)

Clearly, the resulting interval has a �exible coverage probability of at least 1−2� and always
contains CI. For rmin¿0 the interval FCIm could be enlarged in a similar way.

4.2.2. Flexible con�dence intervals based on the su�cient test statistic. Adaptive tests based
on the invariance principle have been criticized because they do not use the su�cient test
statistics (ñ; �x) where ñ= n1 + ñ2 [37, 38]. Similarly, the con�dence intervals (5) and (7) are
not based on (ñ; �x). Can one construct �exible con�dence intervals using (ñ; �x)? Proschan and
Hunsberger [3] show that if �ad solves the equation �ad +exp(−z2�ad =2)=4= �, then P�(

√
ñ (�x−

�)=�¡z�ad )¿ 1− � independent from how we chose ñ2 at the interim analysis. Inverting the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:3366–3381



3374 W. BRANNATH, F. K �ONIG AND P. BAUER

inequality inside the probability gives the �exible one-sided level 1 − � con�dence interval
( �x − � z�ad =

√
ñ;∞). Similarly, a �exible two-sided 1− 2� con�dence interval is

FCImle = (�x − � z�ad =
√
ñ; �x + � z�ad =

√
ñ) (8)

This interval, however, seems large compared to the classical con�dence interval CI. If
for example �=0:025 then z�ad = 2:35 compared to z�=1:96. By de�nition (8) controls the
coverage probabilities for the two speci�c sample size rules which minimize the coverage
probabilities of the lower and upper one-sided intervals, respectively. These rules are unique
and hence the one-sided coverage probabilities are larger than 1 − � for all but a single
sample size rule. Moreover, the rule which minimizes the upper coverage probability does
not minimize the lower coverage probability and vice versa. Hence, the two-sided coverage
probability (the probability that the two-sided interval covers �) is always larger than 1− 2�.
If r̃ is constraint, e.g. rcont6 r̃6 rmax at the second stage for some pre�xed 0¡rcont¡rmax,

then the maximum type I error in�ation of the classical unadjusted test is smaller than without
constraints. Hence, the adjusted level is smaller than for the unrestricted case. This allows for
a smaller �exible con�dence interval. Since in practice sample sizes are always constraint we
further on refer to FCImle as (8) with �ad accounting for the constraints.
But how to determine �ad with constraints on r̃? We show in Appendix A.2 that the max-

imum type I error rate of the rejection rule ‘z� :=
√
ñ (�x− �)=�¿ c’ equals the probability of

‘Zmax(Z1; Z2)¿ c’ for independent standard normally distributed Z1; Z2 whereby

Zmax(z1; z2) := max
j=1; :::; m

z1 +
√rj z2√
1 + rj

(9)

with rj (j=1; : : : ; m) the possible values of r̃, and z1, z2 are assumed �xed and known when
maximizing over rj in (9). Note that by taking the maximum over the pre�xed set of possible
values of r̃, (9) does not depend on r̃ and is a monotone function of the stagewise z-scores.
Since z�=(z1� +

√
r̃ z2�)=

√
1 + r̃6Zmax(z1�; z2�) by de�nition (9), the probability of

‘Zmax(Z1; Z2)¿ c’ is an upper bound for the probability of ‘z�¿ c’. In Theorem A.1 of
Appendix A.2 we show that the probability of ‘z�¿ c’ can be as large as P[Zmax(Z1; Z2)¿ c]
when choosing r̃ based on the interim data.
Knowing Zmax(z1; z2) one can determine �ad such that P[Zmax(Z1; Z2)¿ z�ad ] = � by numeric

integration and root �nding. If using this �ad then (8) has minimal coverage probability 1−2�.
The determination of Zmax(z1; z2) is discussed in Appendix A.3.

4.2.3. Uniform improvement of FCImle. It is interesting to note that the �exible likelihood
based con�dence interval ( �x−� z�ad =

√
ñ; ∞) can be uniformly improved by inverting ‘Zmax(z1�;

z2�)¡z�ad ’: since at every sample point Zmax(z1�; z2�)¿
√
ñ (�x − �)=� for all �, inverting

‘Zmax(z1�; z2�)¡z�ad ’ always leads to a smaller interval than inverting ‘
√
ñ (�x − �)=�¡z�ad ’.

By the de�nition of z�ad the critical region {Zmax(z1�; z2�)¿ z�ad} also has type I error �. The
two sided interval FCImle can be improved in a similar way. However, the improved intervals
are not based on the maximum likelihood statistics (ñ; �x).

4.3. Numerical comparison of �exible con�dence intervals

The ratio of the length of the interval FCIm centred at the median unbiased estimate and the
interval FCImle centred at the maximum likelihood estimate depends only on �, �ad and r̃.
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Figure 2(a) gives a plot of this ratio if w21 = 0:5, for di�erent preplanned rmin¿0 (assuming
that the trial is always continued with the second stage) and rmax with corresponding �ad when
using the (conservative) approximation for Zmax(z1; z2) given in Appendix A.3. Each curve is
plotted for r̃ between rmin and rmax only. Note that the ratio is maximal for r̃=w21=w

2
2 = 1 in

which case median unbiased and maximum likelihood estimate are identical and FCIm=CI is
smaller than FCImle. Note also that FCIm remains shorter than FCImle for a wide range of r̃,
i.e. the likelihood ratio test statistics leads to a larger con�dence interval for most choices of r̃
and becomes smaller only for extreme r̃. Hence, the price paid for the potential of adaptations
becomes higher with the likelihood ratio test statistic than with the weighted z-score test.
Figure 2(b) gives the ratio of the length of FCImle and SFCIm if w21 = 0:5, �0 = 0:5 and

�1 = �2 = 0:0147 is according to a Pocock design at level �=0:025 (not accounting for the
futility boundary), and �ad is such that FCImle has coverage probability 1−2� in a trial which
can either be stopped at the interim analysis (r̃=0) or continued with rcont6 r̃6 rmax. Again
the interval SFCIm based on the invariance principle is shorter than the likelihood ratio based
con�dence interval FCImle for r̃ close to 1 and is longer for small and large r̃. Which method
to use depends on the strength and frequency of the sample size reassessments: if sample size
adaptations are seldom and moderate then SFCIm will be shorter. In designs with extensive
sample size adaptations FCImle will be shorter more frequently. However, one should notice
that SFCIm is shorter whenever stopping the trial at the interim analysis. This is seen from
the dots in Figure 1(b). Similar results are observed when using the weight w21 = 0:25 or 0:75
for FCIm and SFCIm.
We have also compared the extended con�dence interval SEFCIm with FCImle for the pre-

dictive power rule (1) with �0 = 0:5 and �1 = 0:0147 as for SEFCIm in a simulation study
with 106 runs per scenario. Table I gives the average length of SFCIm, SEFCIm and FCImle
as well as the probabilities that SEFCIm is smaller than FCImle. For all rcont ; rmax considered
in the table the enlarged interval SEFCIm was in average smaller than FCImle under the null

(a) (b)

Figure 2. (a) The ratio |FCImle|=|FCIm| of the length of the interval FCIm around the median unbiased
estimate and FCImle around the maximum likelihood estimate in dependence of r̃ if �=0:025 and
w21 = 0:5. The three curves are for rmin = 0:1; 0:5; 1 and rmax = 2; 4; 6, respectively, and with the according
�ad. Each curve is plotted between rmin and rmax. (b) The ratio |FCImle|=|SFCIm| with w21 = 0:5, �1 = �2
and �ad such that SFCIm and FCImle have coverage probability 0.95. In the determination of �ad for the
three curves, r̃ is assumed to be either 0 or between the minimum rcont and maximum rmax which were
pre�xed for the case of a continuation, with rcont = 0:1; 0:5; 1 and rmax = 2; 4; 6, respectively. For r̃=0 the

ratio |FCImle|=|SFCIm| is indicated by a black dot; it equals the respective maximum ratio.
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Table I. Comparison of the length of 95 per cent sequential �exible con�dence intervals containing the
classical con�dence interval when using the predictive power rule with w21 = 0:5, di�erent rcont, rmax, and
when stopping the trial (r̃=0) if z16 z�0 or z1¿ z�1 with �1 = 0:0147. The table summarizes expected
length and probabilities that SEFCIm with �0 = 0:5 and �1 = �2 = 0:0147 is shorter than FCImle under
the null hypothesis �1 = 0 and the alternative �1 =

√
n1 �=� under which a single stage trial with 2n1

observations would have 80 per cent power. Results are from a simulation study with 106 runs.

Expected length of Probability of

rcont rmax �1 SFCIm SEFCIm FCImle length SEFCIm¡length FCImle

0.1 2 0.00 3.51 3.51 3.58 0.99
0.1 2 1.98 3.51 3.51 3.59 0.97
0.5 4 0.00 3.30 3.30 3.38 0.59
0.5 4 1.98 3.39 3.40 3.49 0.77
1 6 0.00 3.20 3.20 3.27 0.59
1 6 1.98 3.30 3.31 3.39 0.78

hypothesis and the alternative �1 =
√
n1 �=� for which a single stage trial with sample size

2 n1 has power 80 per cent. Note that in average the extended interval SEFCIm is only slightly
larger than SFCIm. We observed similar results with �0 = 1 and �1 = 0.

4.4. Extensions

For simplicity we have focused on the mean value of a normal response with known variance.
The �exible con�dence intervals considered in Section 4.1, however, can be easily generalized
to the mean di�erence of two normal responses (e.g. of a treatment and a placebo group)
with common known variance and balanced group sizes at both sequential stages. In this case
one need to replace in the formula for the estimate (4) and in the formulas of Section 4.1 the
stagewise means by the stagewise mean di�erences, as well as n1 and ñ2 by n1=2 and ñ2=2,
respectively. The modi�cation of (4) is again median unbiased if the trial is never stopped
at the interim analysis. The con�dence intervals of Section 4.2 can be modi�ed in a similar
way. For instance, the likelihood based interval (8) with �x replaced by the overall mean
di�erence and ñ replaced by ñ=2 is a �exible con�dence interval for the mean di�erence. For
an unbalanced design and=or an unknown variance there is no exact generalization of (8).
The �exible con�dence intervals in Section 4.1 can also be generalized to parameters �

for which independent stagewise p-values pi� are available (either exactly or at least asymp-
totically). Such p-values exist, e.g. for the mean di�erence � of two normal responses with
a common unknown variance and arbitrary group sizes, or for a rate or the di�erence of
two rates. Using the ‘inverse normal method’ [5] we build stagewise z-scores zi� = zpi� by
applying the inverse standard normal distribution function to 1 − pi�, and use the weighted
z-scores z̃� =w1 z1� + w2 z2� for the dual �exible tests. The method can also be extended
to �exible multi-stage designs [8]. Clearly, such intervals could always be enlarged to cover
classical (unadjusted) point estimates and con�dence intervals.

4.5. Numerical example

We illustrate �exible point estimates and con�dence intervals with the �exible multi-centre
randomized placebo-controlled trial reported in Zeymer et al. [39]. The primary e�cacy end
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point was infarct size measured by the cumulative release of �-HDBH within 72 h after
administration of the drug (area under the curve, �-HDBH AUC). Four dose and a placebo
group were investigated at the interim analysis, where it was decided that two dose groups
(and the placebo) we carried over to the second stage. The second stage sample size were
chosen such that the conditional power is at least 90 per cent for a treatment di�erence of 0.25
times the standard deviation. The trial did not succeed in showing that the drug is superior
to placebo.
We estimate the mean di�erence of �-HDBH AUC between the smaller selected dose and

the placebo group. For simplicity we assume that the sample sizes of both treatment groups
were equal to n1 = 88 at the �rst stage and n2 = 322 at the second stage. (The actual numbers
in the treatment group were 91 at the �rst and 321 at second stage). Hence, the second stage
sample size was r̃=3:66 times the �rst stage size. The mean treatment di�erence (active
treatment minus placebo) was −4:0 at the �rst stage and 1.8 at the second stage. This gives
an overall mean di�erence of 0.6. Assuming that w1 =

√
0:5 was pre�xed before the study,

the median unbiased estimate of the treatment di�erence equals −0:2. Let us assume for
simplicity that the standard deviation is equal to the mean of the pooled estimate from the
placebo and treatment group which is �=26:7 (assuming equal variances and ignoring the
fact that � is estimated). In this case the classical 95 per cent con�dence interval becomes
CI= (−3:1; 4:2). The trial could (and probably would) have been stopped if at the interim
analysis the p-value of the linear trend test for no dose relationship were below a pre�xed
boundary. Hence, exact �exible con�dence intervals must account for the possibility of r̃=0.
We give FCImle assuming that either r̃=0 or rcont = 16 r̃6 rmax =6 (leading to �ad = 0:0117),
and SFCIm, SEFCIm with w21 = 0:5 and Pocock type boundaries �1 = �2 = 0:0147 for �=0:025.
Clearly, in practice one must report only one interval and must �x a priori which interval will
be used. Here we get FCImle = (−3:6; 4:8), SFCIm=(−4:4; 4:1), and SEFCIm=(−4:4; 4:2). As
indicated in Figure 2(b) for r̃=3:66, the intervals FCImle and SFCIm have about the same
length.

5. DISCUSSION AND EXTENSIONS

We have discussed the problem of parameter estimation in �exible designs by comparing
di�erent point estimates and con�dence intervals. We have seen that for typical sample size
rules the class of �exible mean unbiased point estimates can lead to unreasonable large mean
square errors and hence should not be used in practice. The usual maximum likelihood estimate
is mean biased, however, performs well in terms of MSE and hence remains useful for �exible
trials. The median unbiased estimate performs well as long as sample size adaptations are
not too extreme. Its performance is much improved by imposing stopping rules. It has the
additional advantage to be the midpoint of a �exible con�dence interval which is consistent
with the test decision of a weighted z-score test.
Flexible con�dence intervals can be constructed from the invariance principle, e.g. using

the weighted z-score test. Another approach is to use the likelihood ratio test statistics and
to adjust the critical boundary for potential adaptations. We have seen that the con�dence
interval from the weighted z-score test is usually smaller than the con�dence interval from
the adjusted likelihood ratio test, except for extreme sample size reassessments. If one must
account for the possibility of terminating the trial at the interim analysis the advantage of
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the invariance principle based intervals can become less pronounced, and the likelihood ratio
based intervals can be shorter already for moderate sample size adjustments. If stopping at
the interim analysis, however, the likelihood ratio based intervals are larger.
Any �exible con�dence interval can be forced to include the maximum likelihood esti-

mate or even the classical (unadjusted) con�dence interval by simply enlarging the interval.
Simulation results indicate that enlarging the con�dence interval from the weighted z-score
test gives an interval which is in average smaller than the likelihood ratio based �exible
con�dence interval. The reason for the wider likelihood ratio based intervals is that a worst
case adjustment of the critical boundary over all possible sample size reassessment rules is
performed. Hence, the enlarged weighted z-score based con�dence intervals seem to be the
more useful option in practice, in particular, if sample size adjustments are expected to be
rare and=or moderate.
We �nally note that our conclusions are based on the investigation of a limited number

of examples. In practice, the planning stage of an adaptive design should involve similar
investigations of point and interval estimates for the most probable adaptations.

APPENDIX A

A.1. Mean bias, MSE and variance of estimators

The estimates considered in Section 3 are all of the form x̂= ũ �x1+(1− ũ) �x2 where 06 ũ6 1
is either a constant (for the mean unbiased estimate) or depends on ñ2. A formula for the
mean bias can be obtained from the fact that E�[ �x2 −�|ñ2]= 0 for all ñ2, which gives E�[x̂−
�]=E�[ũ (�x1 − �)] + E�[(1− ũ)E�(�x2 − � | ñ2)]=E�[ũ (�x1 − �)]=Cov�(ũ; �x1).
To obtain the bound on the absolute mean bias we maximize and minimize the con-

ditional bias E�(�x − �| �x1; r̃)= (�x1 − �)=(1 + r̃) by choosing r̃ based on the interim data.
Clearly, maximizing (minimizing) the conditional bias maximizes (minimizes) the overall
bias. Obviously, the conditional mean bias is maximized if r̃= rmin for �x1¿� and r̃= rmax
for �x1¡� which gives E�(�x − �| �x1; r̃)= max(0; �x1 − �)=(1 + rmin)−max(0; � − �x1)=(1 + rmax).
Since E�[max(0; �x1 − �)]=E�[max(0; � − �x1)]=0:4�=

√
n1 the overall bias becomes E�[ �x1 −

�]= 0:4 (�=
√
n1) {(1 + rmin)−1 − (1 + rmax)−1}. It can be shown in a similar manner that the

minimum bias is −0:4 (�=√n1) {(1 + rmin)−1 − (1 + rmax)−1} and is achieved by r̃= rmax if
�x1¿� and r̃= rmin otherwise.
The MSE equals E�[(x̂ − �)2]=E�[ũ

2 ( �x1 − �)2] + �2 E�[(1 − ũ)2=ñ2], because E�[ �x2 −
�| �x1; ñ2]= 0 and E�[( �x2 − �)2| �x1; ñ2]=�2=ñ2 for all ñ2. Consequently, the MSE of x̂ relative
to the MSE of the �rst stage mean is

E�[(x̂ − �)2]=(�2=n1)=E�[ũ2 (z1 − √
n1 �=�)2] + E�[(1− ũ)2=r̃ ] (A1)

For the maximum likelihood estimate (A1) becomes E�[(z1−√
n1 �=�)2=(1+r̃)2]+E�[r̃=(1+r̃)2],

for the median unbiased estimate w21 E�[(z1−
√
n1 �=�)2=(w1+w2

√
r̃)2]+w22 E�[r̃=(w1+w2

√
r̃)2].

For the mean unbiased estimates MSE and variance are the same and equal (�2=n1)
{u2 + (1− u)2 E�(1=r̃)}.
In general, the variance of x̂ is Var�(x̂)=E�[(x̂ − �)2]−E�[x̂−�]2 =E�[ũ2 ( �x1−�)2]+

�2 E�[(1− ũ)2=ñ2]− E�[ũ (�x1 − �)]2 =Var�[ũ (�x1 − �)] + (�2=n1)E�[(1− ũ)2=r̃].
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A.2. Maximum type I error probability with constraints on the sample size

Theorem A.1
Let Zmax(·; ·) be as de�ned in (9). Choosing at the interim analysis r̃ from the values rj
considered in (9) based on the unblinded interim data, the maximum type I error probability
of the z-test z¿ z�ad for H0 :�=0 equals P[Zmax(Z1; Z2)¿ z�ad ] for independent and standard
normally distributed Z1; Z2.

Proof
By de�nition, Zmax(z1; z2)¿ z=(z1 +

√
r̃ z2)=

√
1 + r̃ whatever r̃ is chosen at the interim anal-

ysis. Hence, P[Zmax(Z1; Z2)¿ z�ad ] is an upper bound for the maximum type I error proba-
bility. Next we verify that with a sample size recalculation at the interim analysis the test
‘z¿ z�ad ’ can have type I error probability equal to P[Zmax(Z1; Z2)¿ z�ad ]. To this end we
show in the next paragraph how one can choose r̃= r̃ (z1) from the information on z1 such
that ‘Zmax(z1; z2)¿ z�ad ’ implies ‘(z1 +

√
r̃ (z1) z2)=

√
1 + r̃ (z1)¿ z�ad ’ for any z2.

Let z(z1)2 = inf{z2 :Zmax(z1; z2)¿ z�ad} which is a function of z1, and notice that
Zmax(z1; z

(z1)
2 )= z�ad by continuity of Zmax(z1; z2) in z2. Continuity of Zmax(z1; z2) follows from

the continuity of (z1+
√rj z2)=

√
1+rj and from taking the maximum over �nitely many rj.

Now choose r̃ (z1) such that (z1 +
√
r̃ (z1) z(z1)2 )=

√
1 + r̃ (z1) =Zmax(z1; z

(z1)
2 ). Obviously, r̃ (z1) is a

function of z1. Clearly, ‘Zmax(z1; z2)¿ z�ad ’ implies ‘z2¿ z
(z1)
2 ’ which in turn implies

(z1 +
√
r̃ (z1) z2)=

√
1 + r̃ (z1)¿ (z1 +

√
r̃ (z1) z(z1)2 )=

√
1 + r̃ (z1) =Zmax(z1; z

(z1)
2 )= z�ad

A.3. On the determination of Zmax(z1; z2)

If there are only few possible values for r̃ then Zmax(z1; z2) can be obtained by determining
the maximum (9) directly. It is helpful to notice that for �¡0:5 one gets z�ad¿0 and hence
one can replace Zmax(z1; z2) by Z+max(z1; z2) := max[0; Zmax(z1; z2)] in the determination of �ad.
The latter combination function is easier to compute, for instance, Z+max(z1; z2)=0 whenever
z1¡0 and z2¡0.
For a large number of rj between rmin and rmax we can approximate Z+max(z1; z2) conservatively

by taking the maximum with respect to all real values between rmin and rmax. We show next
that this approximation gives

Z+max(z1; z2)≈
⎧⎨
⎩

√
z21 + z

2
2 z1; z2¿0 and

√
rmin z16 z26

√
rmax z1

max(0; z̃(2;min); z̃(2;max)) otherwise
(A2)

with z̃(mxx) = (z1 +
√
rmxx z2)=

√
1 + rmxx for mxx∈ {min;max}. If r̃ either 0 or rcont6 r̃6 rmax

then Z+max(z1; z2) is the maximum between max(0; z1) and (A2) with rmin replaced by rcont and
z̃(min) replaced by z̃(cont) = (z1 +

√
rcont z2)=

√
1 + rcont.

To verify (A2) we can restrict attention to z1; z2 where either z1¿ 0 or z2¿ 0. We consider
the derivative (d=dr)(z1 +

√
r z2)=

√
1 + r which has the same sign as sr := z2 − √

r z1 for
r¿0. If z2¡0 and z1¿ 0 then sr is negative for all r¿0 and hence Zmax(z1; z2)= (z1 +√
rmin z2)=

√
1 + rmin. If z16 0 and z2¿0 then sr is positive for all r¿0 and so Zmax(z1; z2)= (z1

+
√
rmax z2)=

√
1 + rmax. If z2 = 0 then Zmax(z1; 0) equals either z̃

(min) or z̃(max) depending on the
sign of z1. If z1¿0 and z2¿0 then (z1 +

√
r z2)=

√
1 + r has the unique maximizer r= z22=z

2
1,
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the solution of z2 − √
r z1 = 0. If z22=z

2
1¡rmin then (z1 +

√
r z2)=

√
1 + r is decreasing for all

r¿ rmin and hence is maximal for r= rmin. If z22=z
2
1¿rmax then (z1+

√
r z2)=

√
1 + r is increasing

for all r6 rmax and hence is maximal for r= rmax. If rmin6 z22=z
2
16 rmax then r= z

2
2=z

2
1 gives

Zmax =
√
z21 + z

2
2.

Note that setting rmin =0 and letting rmax → ∞ we get z̃min = z1 and z̃max = z2 and a limiting
combination function (9) which is closely related to the circular conditional error function of
Proschan and Hunsberger [3].
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