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SUMMARY

Adaptive designs play an increasingly important role in clinical drug development. Such designs use
accumulating data of an ongoing trial to decide how to modify design aspects without undermining the
validity and integrity of the trial. Adaptive designs thus allow for a number of possible adaptations at
midterm: Early stopping either for futility or success, sample size reassessment, change of population, etc.
A particularly appealing application is the use of adaptive designs in combined phase II/III studies with
treatment selection at interim. The expectation has arisen that carefully planned and conducted studies
based on adaptive designs increase the efficiency of the drug development process by making better use
of the observed data, thus leading to a higher information value per patient.

In this paper we focus on adaptive designs for confirmatory clinical trials. We review the adaptive
design methodology for a single null hypothesis and how to perform adaptive designs with multiple
hypotheses using closed test procedures. We report the results of an extensive simulation study to evaluate
the operational characteristics of the various methods. A case study and related numerical examples are
used to illustrate the key results. In addition we provide a detailed discussion of current methods to
calculate point estimates and confidence intervals for relevant parameters. Copyright q 2009 John Wiley
& Sons, Ltd.

KEY WORDS: adaptive seamless design; design modification; flexible design; combination test; condi-
tional error rate; interim analysis; many-to-one comparisons; treatment selection

∗Correspondence to: Franz Koenig, Section of Medical Statistics, Core Unit for Medical Statistics and Informatics,
Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria.

†E-mail: franz.koenig@meduniwien.ac.at
‡The first two authors (in alphabetic order) have made equal contributions to this paper.

Contract/grant sponsor: FWF; contract/grant number: P18698-N15

Received 4 May 2008
Copyright q 2009 John Wiley & Sons, Ltd. Accepted 8 December 2008



F. BRETZ ET AL.

1. INTRODUCTION

Interim analyses are often conducted in clinical trials because of ethical and economical reasons.
On the one hand, clinical trials should not be continued (and decisions postponed) if a clear
tendency favoring a particular treatment evolves so that patients in need can benefit quickly from
the medical progress. On the other hand, patients should not be treated with a new therapy (for
which in such situations only limited knowledge about the risks is available) if the ongoing trial
gives no indication for a potential benefit. Moreover, clinical trial designs that allow for early
decisions during the conduct of an ongoing study may reduce the overall costs and timelines of
the development program for the new therapy.

Repeatedly looking at the data with the possibility for interim decision making, however, may
inflate the overall type I error rate since the primary null hypotheses of interest are tested anew at
each interim analysis. Special analysis methods are therefore required to maintain the validity of a
clinical trial, if confirmatory conclusions at the final analysis are required, such as in late phase II
or phase III trials. Group sequential designs are commonly used to account for the repeated data
analyses [1–4]. Such designs allow one to stop a trial at any interim analysis for either futility or
superiority while controlling the overall type I error rate. However, standard design aspects, like
the number of interim analyses, the group sample sizes and the decision boundaries, have to be
specified in the planning phase and cannot be changed during the ongoing trial. Once the design
has been fixed and the trial has been started, it has to be conducted according to the pre-specified
decision rules. Group sequential designs are thus characterized by a pre-specified adaptivity [5],
that is, trial design modifications based on the information collected up to an interim analysis are
not possible. One possibility to introduce more flexibility is to consider error spending functions
[6], which allow for a flexible number of stages and group sample sizes. Such methods, however,
require that the adaptations are independent from the interim test statistics. Extensions thereof to
multi-armed clinical trials were investigated, among others, by Follmann et al. [7], Hellmich [8]
and Stallard and Friede [9].

To overcome the inherent limitations of such designs, confirmatory adaptive designs have been
proposed instead, which enable the user to perform design modifications during an ongoing clinical
trial while maintaining the overall type I error rate [10, 11]. This new class of trial designs is
characterized by an unscheduled adaptivity [5], that is, adapting design parameters can be done
without a complete pre-specification of the adaptation rules. Applying such a clinical trial design
with flexible interim decisions allows the user to learn from the observed data during an ongoing trial
and to react quickly to emerging unexpected results. Important examples of mid-term adaptations
include sample size reestimation or reallocation based on the observed nuisance parameters [12]
or dropping of treatment arms in combined phase II/III trials [13, 14].

To control the overall type I error rate, confirmatory adaptive designs satisfy a common invariance
principle [5]: Separate test statistics are calculated from the samples at the different stages and
combined in a pre-specified way for the final test decisions. Hence, any design modification that
preserves the distributional properties of the separate stagewise test statistics under a given null
hypothesis H of interest does not lead to an inflation of the overall type I error rate [11, 15].
Approaches based on the combination test principle combine the stagewise p-values using a pre-
specified combination function [10, 11] and by construction satisfy the invariance principle. A
closely related approach is based on the conditional error principle, which computes the type I
error under the null hypothesis H conditional on the observed data at interim and use this quantity
for the final analysis [16–18]. Such confirmatory adaptive designs thus enable the user to perform
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mid-trial design modifications based on the complete observed information from an ongoing study,
possibly including information external to the trial (historical data, parallel study results, etc.). In
particular, Bayesian interim decision tools can be applied to guide the interim decision process
without undermining the frequentist character of the final analysis [19, 20].

The investigation of novel adaptive trial designs has recently attracted much attention because
of the recognized need to improve the efficiency of current drug development processes [21]. The
Pharmaceutical Research and Manufacturers of America (PhRMA), for example, has initiated a
working group to facilitate a wider usage and regulatory acceptance of these designs [22]. Adaptive
designs are mentioned explicitly in the Critical Path Opportunities List published by the U.S. Food
and Drug Administration as one example for creating innovative and efficient clinical trials [23].
The European Medicines Agency has recently published a Reflection Paper, which gives regulatory
guidance on methodological issues in confirmatory clinical trials planned with an adaptive design
[24]. Continual discussions between regulatory agencies, the pharmaceutical industry and academia
have helped to foster a better mutual understanding of the issues and opportunities related to
adaptive designs [25, 26]. In view of these ongoing discussions and activities, it is the aim of this
paper to review the current methodology for confirmatory adaptive trial designs controlling strictly
the overall type I error rate. Out of scope for this review are adaptive designs applied in early drug
development, which often take place under different constraints and use different methodologies,
such as Bayesian adaptive designs [27, 28] or adaptive dose ranging studies [29]. An overview
of opportunities for adaptivity in the entire drug discovery and development process is described
in [30].

Accordingly, the paper is organized as follows. In Section 2, we introduce a case study, which
will be used in the subsequent sections to illustrate the methods. In Section 3, we describe the core
methodology for the analysis of confirmatory adaptive designs. This section includes an overview
of the adaptive design methodology for a single null hypothesis and how to perform adaptive
designs with multiple hypotheses. In Section 4, we discuss important design considerations, such
as power calculation, efficient interim decision rules, and sample size reestimation considerations.
In Section 5, we present the results of an extensive simulation study to evaluate the operational
characteristics of the various methods. In Section 6, we review the current methods for calculating
point estimates and confidence intervals for relevant parameters. Section 7 is devoted to practical
considerations when implementing confirmatory adaptive designs. Concluding remarks are given
in Section 8.

2. A CASE STUDY

This case study refers to the late development phase of a drug for the indication of generalized
anxiety disorder. The primary objective is (i) to select the most promising dose levels out of three
different dose levels under investigation and (ii) to demonstrate subsequently that the selected dose
levels lead to a statistically significant and clinically relevant efficacy as compared with placebo.
The primary endpoint of this study is the change from baseline at week 8 of treatment in the
total score on the Hamilton Rating Scale for Anxiety (HAM-A, [31]). This psychiatric scale was
developed to quantify the anxiety symptomatology. It consists of 14 items, each defined by a series
of symptoms. Each item is rated on a 5-point scale, ranging from 0 (not present) to 4 (severe).
It is reasonable to assume that the total HAM-A score is normally distributed. Furthermore, it is
assumed based on the outcome of previous studies that the common standard deviation across the
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Figure 1. Top: classical development with two sperate studies. Bottom: combined phase II/III design with
treatment selection at interim.

dose groups is 6 points of the HAM-A scale. The sample size of the study should ensure that the
power for the individual pairwise comparisons is at least 1−�=0.8, assuming a clinically relevant
benefit of 2 points over placebo and an overall significance level of �=0.025 (assuming one-sided
null hypotheses).

The clinical team was requested to investigate the potential application of a two-stage adaptive
design with dose selection at interim as compared with a traditional development program with
two independent studies. In the following we describe these two development options in more
detail.

Following the classical drug development paradigm, two separate studies are required. The three
dose levels are first compared with placebo in a phase II study. Based on the results from that study,
it is decided, whether to continue the drug development and which dose levels to carry forward
to phase III (Figure 1, top). If the decision is to carry out the phase III study, previously available
information is typically only taken into account when discussing the parameter estimates necessary
for the sample size determination. Other than that, the phase III study is run independently from
the phase II trial. In particular, the analysis of the confirmatory phase III study does not use the
data from phase II.

In a two-stage confirmatory adaptive design one or more dose levels are selected at the interim
analysis (after the first stage) and carried forward to the second stage together with placebo
(Figure 1, bottom). The final comparisons of the selected dose levels with placebo include the
patients of both stages and are performed such that the overall type I error rate is controlled at a
pre-specified significance level �. The decision rules for the interim analysis should be set up in
such a way that dose levels unlikely to show a clinically relevant difference to placebo are stopped
early for futility. The expectation is that the combined phase II/III design leads to a reduction of
the intermediate decision time (‘white space’) and increases the information value by combining
the evidence across different development phases. Such designs are by construction inferentially
seamless, as opposed to operationally seamless designs [32], where data from from different phases
or stages are not combined. Note that in the present case study the same patient population and
the same primary endpoint are investigated in both phases. This ensures that the stages are as
homogeneous as possible, which is an essential requirement of combined phase II/III designs.

In the following we will use this case study to illustrate the design and analysis methods
for adaptive designs in confirmatory studies as compared to a traditional development program.
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The numerical calculations are based on a set of SAS/IML macros, which are available at
www.meduniwien.ac.at/user/franz.koenig. This web site also contains a script file, which includes
the calls for the simulations conducted in Section 4.

3. ANALYSIS OF CONFIRMATORY ADAPTIVE DESIGNS

In this section, we describe the core methodology for the analysis of confirmatory adaptive designs.
In Section 3.1, we explain the underlying conditional invariance principle. In Section 3.2, we
describe adaptive tests for a single null hypothesis, reviewing both the combination test and the
conditional error principle. These methods are extended in Section 3.3 to test adaptively multiple
hypotheses based on the closure principle. The resulting test procedures are illustrated in Section 3.4
with a numerical example. For the sake of simplicity we consider only two-stage designs with a
single interim analysis. The generalization of the subsequent methods and results to more than
two stages is mostly straightforward.

3.1. Conditional invariance principle

Adaptive designs follow a common principle called conditional invariance principle [5]. Assume
a trial with two sequential stages, where design characteristics of the second stage are chosen
based on the data from the first stage as well as external information. We consider here the
behavior of the trial under a specific elementary null hypothesis H . Let T2 denote the test statistic
for H applied to the second stage data. Due to the data-driven choice of the design character-
istics, T2 will in general depend on the interim data. However, we often can transform T2 in
such a way that the conditional null distribution of T2 given the interim data and the second
stage design equals a fixed pre-specified null distribution, and hence is invariant with respect to
the interim data and mid-trial design adaptations. An invariant conditional distribution is typi-
cally achieved by transforming T2 to a p-value p2, which is uniformly distributed under H
(conditionally on the interim data and the second stage design). Usually, the invariance of the
conditional null distribution of p2 implies that p2 is stochastically independent of the first stage
data. Since the joint distribution of the interim data and p2 is known and invariant with respect
to the unknown mid-trial adaptation rule, we can specify an �-level rejection region in terms of
the interim data and p2. This gives a test that controls the overall type I error rate at level �
independently of the interim adaptation. The current most rigorous discussion of this can be found
in [33].

3.2. Adaptive tests for a single null hypothesis

3.2.1. Combination test approach. Consider a null hypothesis H which is tested in two stages. Let
p1 and p2 denote the stagewise p-values for H , such that p1 is based only on the first stage and p2
only on the second stage data. A two-stage combination test [10, 11] is defined by a combination
function C(p1, p2) which is monotonically increasing in both arguments, some boundaries �1 and
�0 for early stopping as well as a critical value c for the final analysis. The trial is stopped in
the interim analysis if p1��1 (early rejection of the null hypothesis) or p1>�0 (early acceptance
due to futility). If the trial proceeds to the second stage, i.e. �1<p1��0, the null hypothesis H is
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rejected at the final analysis if C(p1, p2)�c, where c solves

�1+
∫ �0

�1

∫ 1

0
1[C(x,y)�c] dy dx=� (1)

Here, the indicator function 1[·] equals 1 if C(p1, p2)�c and 0 otherwise. By definition of c,
the combination test C(p1, p2) is an �-level test. This remains true if the design of the second
stage (for example, the sample size or the test statistic) is based on the interim data. The only
requirement is that under H the distribution of the second stage p-value p2 conditioned on p1 is
stochastically larger than or equal to the uniform distribution [15]. This is the case, for example,
when new patients are recruited in the second stage and conservative tests are used at each stage.

We define the decision function of a combination test through

�C (p1, p2)=
{
1 if p1��1 or both p1��0 and C(p1, p2)�c

0 otherwise
(2)

Thus, �C =1 (�C =0) corresponds to the rejection (non-rejection) of H , respectively.
At the planning stage of a clinical trial one has to specify the combination function and the

design of the first stage, including the sample size and the test statistic for the first stage. The second
stage design does not have to be specified in advance, but it must be specified latest at the interim
analysis. Note that this allows in principle to use different test statistics for the two stages, for
example, analyzing the first stage data with a non-parametric test and the second stage data with
a parametric test. In Section 7, we give recommendations about the amount of pre-specification
required in a study protocol.

Well-known examples of combination functions include Fisher’s product criterion C(p1, p2)=
p1 p2 [10, 11] and the weighted inverse normal combination function [34]

C(p1, p2)=1−�[w1�
−1(1− p1)+w2�

−1(1− p2)] (3)

where w1 and w2 denote pre-specified weights such that w2
1+w2

2 =1 and � denotes the cumulative
distribution function of the standard normal distribution. Cui et al. [35] proposed a method that
in effect is equivalent to the inverse normal method (3), although the latter is more general. Note
that for the one-sided test of the mean of normally distributed observations with known variance,
the inverse normal combination test with pre-planned stagewise sample sizes n1,n2 and weights
w2
1 =n1/(n1+n2),w2

2 =n2/(n1+n2) is equivalent to a classical two-stage group sequential test if
no adaptations are performed (the term in squared brackets is simply the standardized total mean).
Thus, the quantities �1,�0 and c required for the inverse normal method can be computed with
standard software for group sequential trials [36].

3.2.2. Binding versus non-binding stopping rules for futility. As seen from (1), the critical value
c depends on the boundaries �1 and �0. For a fixed value of �1, decreasing values of �0 result in
larger values of c. This has two contradictory implications on the power. On the one hand, it will
cause a decrease in power because decreasing �0 increases the probability of stopping for futility
after the first stage. On the other hand, with a larger c one has a higher chance to reject after
the second stage. It depends on the distribution of the p-value, which of these two implications
has a larger overall effect on the power. In general one can argue that decreasing values of �0
indeed leads to larger power for sufficiently powered studies. However, choosing �0<1 implies a
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binding futility boundary: If the observed first stage p-value p1 is larger than the futility threshold
�0, the null hypothesis H must be retained, irrespective of the second stage results. Consequently,
p1>�0 implies in practice a futility stop of a study at the interim analysis. Ignoring the binding
futility rule by continuing the study with the possibility to reject H in the final analysis may inflate
the overall type I rate. Alternatively, setting �0=1 guarantees the full flexibility to continue the
study whenever it is appropriate. Such flexibility is often important in order to react quickly to
unpredicted results or trends. It should be noted that even if �0=1, the study can be stopped at any
time for futility without inflating the overall type I error rate, implying that the null hypothesis H
is not rejected. This is sometimes called non-binding stopping for futility. Note that designs with
binding stopping rules have larger power than those with non-binding stopping rules at the cost
of reduced flexibility. Ultimately, the selection of an adequate threshold value �0 is application
specific and needs to be decided on a case-by-case basis, possibly taking simulations into account.

3.2.3. Conditional error function for adaptive combination tests. An alternative test procedure to
the combination function approach is based the conditional error function described below [16].
Let X1 denote the first stage sample and let A(X1) denote a measurable function from the first
stage sample space to the unit interval [0,1] such that

EH (A)�� (4)

The function A is referred to as the conditional error function. The sample size and the test statistic
for the second stage can be modified based on the interim data, thus resulting in a second stage
p-value p2 (based on the data of the second stage, only). Finally, H is rejected if

p2�A(X1) (5)

Note that if A=0 (early acceptance) or A=1 (early rejection), no second stage needs to be
performed for the test decision. This procedure controls the overall type I error rate at level � as
long as the conditional distribution of the second stage p-value p2, given the first stage data, is
stochastically larger or equal to the uniform distribution under H .

One can also define the conditional error function A(X1) via a (single- or multi-stage) test �
[17]. As before, let �=1 (�=0) denote the rejection (non-rejection) of the null hypothesis H ,
respectively. Then the corresponding conditional error function of � conditioning on the first stage
data X1 is given by

A(X1)= EH(�|X1)

Note that with this choice of the conditional error function the original test is applied, if no
adaptations are performed. At the interim analysis, one thus has the option to complete the trial
as initially planned, or to choose any other test for H (with new observations) at the level of the
conditional error function. If adaptations are performed, the null hypothesis H is rejected based on
the second stage p-value p2 whenever (5) is satisfied. It follows that the conditional error function
is the conditional probability of rejecting H under the assumption that H is true, given the first
stage p-value p1. We refer to [37] for a graphical illustration of the conditional error function
in the plane for the p-values of both stages. Note that the conditional error rate may depend on
nuisance parameters, if present. In some situations the conditional error can then be approximated,
such as, for example, in the t test setting [38].
Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. (2009)
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The conditional error function corresponding to any combination test defined through (2) is
given by

A(p1)=

⎧⎪⎪⎨
⎪⎪⎩
1, p1��1

max
x∈[0,1]{x ·1[C(p1,x)�c]}, �1<p1��0

0, p1>�0

Note that due to (1) the level condition (4) is always satisfied. Obviously, �C rejects H if and
only if p2�A(p1). Consider as an example Fisher’s product combination test C(p1, p2)= p1p2.
The corresponding conditional error function is then given by

A(p1)=

⎧⎪⎨
⎪⎩
1, p1��1

c/p1, �1<p1��0

0, p1>�0

Similarly, the conditional error function for the weighted inverse normal method defined in (3) is
given by

A(p1)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, p1��1

1−�

(
�−1(1−c)−w1�

−1(1− p1)

w2

)
, �1<p1��0

0, p1>�0

3.3. Multiple testing in confirmatory adaptive designs

We now consider the case of testing k elementary null hypotheses H1, . . .,Hk . In Section 3.3.1,
we review the closure principle to the extent required in Section 3.3.2, where we describe the
methodology for confirmatory adaptive designs with multiple hypotheses. To illustrate the ideas,
we assume the comparison of k treatments with a control. Accordingly, we denote by Hi :�i��0, i ∈
T1={1, . . .,k}, the related k one-sided null hypotheses of comparing treatment i with the control 0,
where �i denotes the mean effect of treatment i . It should be noted that the methodology described
in the following is more general and covers many other applications. We refer to [20, 39–41]
for clinical examples addressing other types of design modifications than treatment selection or
sample size reassessment.

3.3.1. The closure principle. Performing an �-level test for each of k hypotheses Hi may lead to a
substantial inflation of the overall type I error rate. That is, the probability to reject at least one true
null hypothesis may be larger than the pre-specified significance level �. However, it is mandatory
for confirmatory clinical trials that the probability to declare at least one ineffective treatment as
effective is bounded by �. Hence the need of multiple test procedures, which strongly control
the familywise error rate (FWER) at level �, where strong FWER is defined as the maximum
probability of rejecting at least one true null hypothesis irrespective of the configuration of true
and false null hypotheses [42].

The closure principle [43] is a general methodology to construct multiple test procedures
controlling the FWER in the strong sense. The closure principle considers all intersection
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hypotheses that are constructed from the initial set of elementary null hypotheses. To control
the FWER, an elementary null hypothesis Hi can only be rejected if all intersection hypotheses
implying Hi are rejected, too. Then the resulting closed test procedure is operationally defined as
follows:

1. Let Hi , i ∈T1={1, . . .,k}, be the set of elementary null hypotheses.
2. Construct all intersection hypotheses HS=⋂i∈S Hi ,S⊆T1.
3. Define suitable �-level tests �S for each intersection hypothesis HS,S⊆T1.
4. Reject an elementary null hypothesis Hi , i ∈T1, if all intersection hypotheses HS with

i ∈S⊆T1 are rejected by their �-level tests �S.

It is shown that the above procedure controls the FWER strongly at level � [43]. Note that we
can specify any �-level test �S for HS and in particular different tests can be used for different
hypotheses. This property will be exploited when constructing adaptive tests based on the closure
principle in Section 3.3.2.

Consider as an example the case of comparing k=2 active treatments with a control. It follows
from the closure principle that Hi , i=1,2, is rejected at level � if and only if both the test for the
intersection hypothesis H1∩H2 and the test for the elementary hypothesis Hi are significant. For
further examples illustrating the closure principle to the extent required in the context of adaptive
designs, we refer to [14].

3.3.2. Multiple testing in confirmatory adaptive designs. In this section, we describe how to test
adaptively multiple hypotheses by combining the methodology for adaptive tests (Section 3.2)
with the closure principle (Section 3.3.1) [44–46]. We describe the methodology for the case
that hypotheses are dropped at the interim analysis (for example, because treatments are dropped
at interim for futility reasons and the related treatment-control comparisons become irrelevant).
Extensions to other situations are mostly straightforward [46].

According to the closure principle we define for each intersection hypothesis HS,S⊆T1,
an adaptive combination test �S with combination function C(p1, p2), stopping boundaries �1,
�0 and critical value c. Note that different combination functions as well as different stopping
boundaries can be used for different intersection hypotheses. Let p1,S and p2,S denote the stage-
wise p-values for the intersection hypothesis HS,S⊆T1. One key characteristic of adaptive
closed test procedures is that the multiplicity adjustment for HS is addressed within each stage
separately and the information is combined only afterwards using the pre-specified combina-
tion function C(p1, p2). To address the multiplicity within one stage, we can use any standard
fixed-sample multiple test procedure, as reviewed below. This means that within a stage we
can test HS with any (pre-specified) single stage multiple test procedure and plug the asso-
ciated stagewise multiplicity adjusted p-values p1,S and p2,S into the combination function
C(p1, p2).

Assume now that at the interim analysis some hypotheses are dropped. Let T2⊆T1 denote
the index set of those hypotheses that are tested in the final analysis after the second stage. In
the example of dropping treatments at interim, T2 would denote the index set of the remaining
treatment-control hypotheses to be tested at the end of the study. In this example, no data of the
discontinued treatment arms would be available for the second stage. When testing HS for those
intersections S that include treatments that were dropped at interim, the second stage multiplicity
adjusted p-value p2,S accounts only for the active treatments continued to the second stage. That
is, for all hypotheses HS,S⊆T2, the associated p-value p2,S based on the second stage data
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X2 can be calculated using any suitable multiple test procedure. For all other S⊆T1 we set

p2,S= p2,S∩T2 (6)

where p2,∅ =1. For each S⊆T1 the intersection hypothesis HS is then rejected if �C (p1,S,

p2,S)=1. An individual hypothesis i ∈T1 is rejected if all HS, S⊆T1, with i ∈S, are rejected
by their combination tests. We will illustrate this with an example in Section 3.4.

As mentioned before, the closure principle allows the use of different tests for different inter-
section hypotheses. Let s denote the number of treatments in S⊆T1. Let further p j,i denote
the individual stagewise p-value for stage j =1,2 and hypothesis Hi and let p j,(i) denote the
ordered p-values within stage j . If the common Bonferroni procedure [42] is used, the stagewise
adjusted p-value for HS,S⊆T j , at stage j =1,2 is p j,S=min{1,s mini∈S p j,i}. Similarly, one
can use the Šidak test [42] with p j,S=1−[1−mini∈S p j,i]s , or the Simes test [47] with p j,S=
s mini∈S p j,(i)/ i . If normality can be assumed, the Dunnett test [48] or other parametric tests
can alternatively be used. Note that for the second stage the adjusted p-values for HS, S⊆T2,
are defined as above. For all other S⊆T1 (such that S �⊆T2) the p-values for the intersection
hypotheses are given in (6). Finally we note that closed test procedures based on the conditional
error function approach are also available, see [49] for adaptive Dunnett tests with treatment
selection at interim.

3.4. Numerical example

We now illustrate some of the methods from the previous sections with a numerical example.
Motivated by the case study from Section 2 we assume a two-stage design with dose selection at
interim. We assume that the outcomes are approximately normal with a common standard deviation
of �=6 points. Suppose that the planned total group sample size is n=142 and that the interim
analysis is made halfway after n1=71 observations per group. We use an adaptive combination test
with the inverse normal combination (3) and weights proportional to the stagewise sample sizes,
i.e. w1=w2=√

1/2. In order to define reasonable early stopping boundaries, we use an O’Brien–
Fleming design [2] with �1=0.0054, �0=0.1 and c=0.0359 for �=0.025. The quantities �1 and c
can be computed with standard software packages for given values of � and �0 [36]. Note that
the small value of �0 indicates a rather aggressive binding futility stopping rule and is used here
only for illustration purposes. Finally, we assume that the study involves the comparison of three
active dose groups with placebo, resulting in k=3 null hypotheses Hi :�i��0, i ∈T1={1,2,3}.
Let X̄ j,i denote the observed mean values in dose group i=0, . . .,3, at stage j=1,2.

Assume that after the first stage we have observed the mean values X̄1,i shown in Table I,
which also summarizes the resulting standardized z-statistics and unadjusted p-values p1,i . If we
would not correct for multiplicity, we could already reject the null hypothesis H3 at the interim
analysis, since p1,3=0.0049<0.0054=�1. But since this study is supposed to be confirmatory,
we apply the closure principle and use the Bonferroni test for each intersection hypothesis, see
Figure 2. The Bonferroni adjusted p-value for the global null hypothesis H{1,2,3} at the first stage
is p1,{1,2,3} =3 min(p1,1, p1,2, p1,3)=3×0.0049=0.0147. Since �1<p1,{1,2,3} it follows from the
closure principle that we cannot reject any of the three elementary null hypothesis at interim.
Moreover, for the global intersection hypothesis H{1,2,3} we have p1,{1,2,3}<�0, the binding futility
threshold is not crossed and we can proceed to the second stage. However, we have to consider
also the other intersection hypotheses H{1,2}, H{1,3} and H{2,3} with Bonferroni adjusted p-values
p1,{1,2} =0.1364, p1,{1,3} =0.0098 and p1,{2,3} =0.0098. Since p1,{1,2}>�0, the binding futility
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Table I. Summary statistics from the first stage of an adaptive design
with dose selection at interim.

i X̄1,i z-Statistic p1,i

0 0 — —
1 0.8 0.794 0.2135
2 1.5 1.490 0.0682
3 2.6 2.582 0.0049

Figure 2. Closed test procedure for the first stage data. Bonferroni adjusted p-values are reported
for each intersection hypothesis.

threshold is crossed and we have to accept H12, and consequently the elementary hypotheses H1 and
H2 as well, irrespective of the second stage results. In practice, this would imply a discontinuation
of the dose groups i =1,2 and only the high dose group i =3 and placebo i =0 would be continued
in the second stage. Note that even if the binding futility threshold had not been crossed, the
adaptive design methodology employed here would allow the sponsor to discontinue any dose
group (e.g. because of unexpected safety results).

To finalize the numerical example, assume the second stage means X̄2,0=0 and X̄2,3=1.9,
resulting in the p-value p2,3=0.0296. Since all other treatments have been dropped at interim, we
plug p2,3 as the second stage p-value into the adaptive combination tests for H{1,2,3}, H{1,3},
H{2,3} and H3 (all other intersection hypotheses cannot be rejected anyway because of the interim
results). Since C(p1,{1,2,3}, p2,3)<c, C(p1,{1,3}, p2,3)<c, C(p1,{2,3}, p2,3)<c and C(p1,3, p2,3)<c,
we finally can reject H3 and conclude that dose i =3 is superior to placebo.

4. DESIGN CONSIDERATIONS

In this section we describe some important design considerations when planning a confirmatory
adaptive design. We start with discussing different measures to establish the success of a trial
in Section 4.1, resulting in different power concepts. In Section 4.2, we describe the concept of
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conditional power and briefly review the related problem of sample size reestimation. Finally, we
discuss statistical considerations for interim decisions in Section 4.3.

4.1. Power concepts

An important decision to be made at the design stage of a clinical trial is to define a suitable metric
to measure the success according to the study objectives, which is not always an easy task. Clinical
trials employing an adaptive design to address multiple hypotheses typically intend to reach a
decision about a number of null hypotheses Hi , i =1, . . .,k, and sometimes intersections of these,
such as the global null hypothesis H{1,...,k} =⋂k

i=1 Hi , for example. Power concepts to measure
the success of a study are then associated with the probabilities of rejecting Hi , i =1, . . .,k, if
they are in fact wrong. Let Ki denote the alternative hypotheses associated with Hi , i =1, . . .,k.
The problem is that the individual events

Hi is rejected in favor of Ki

can be combined in many different ways to obtain a measure of success, such as the probability
to reject at least one false null hypothesis (disjunctive power) or the probability to reject all false
null hypotheses (conjunctive power) [50].

To illustrate the issue of defining an appropriate measure of trial success, assume, for example,
that the null hypotheses are given by Hi :�i�0, where �i denotes the mean effect of treat-
ment i . The individual power to reject Hi at a given point �̃i in the parameter space is p�̃(�̃i )=
P�̃(Hi is rejected|�i = �̃i ), where �̃= (�̃1, . . ., �̃k). Two appealing power concepts are then

P�̃(reject Hi for at least one treatment with �̃i>0) (7)

which is related to the disjunctive power introduced before, and

p

(
max

i=1,...,k
�̃i

)
(8)

i.e. the probability of rejecting the treatment that is truly best in terms of the efficacy parameter. In
adaptive designs involving treatment arm selection at an interim stage, there is a positive probability
of discontinuing the treatment arm b with �b =maxi=1,...,k(�i ) at interim. If no early stopping for
success is foreseen, this discontinuation is associated with a non-rejection of Hb. Of course, this
does not preclude the possibility of a successful trial in the sense of (7). However, if the trial aim is
to identify the best treatment, the interpretation of (7) as the probability of success is inappropriate
and (8) should be preferred. If only one treatment is selected at interim and ‘best treatment’ is
entirely determined by the parameters �i ,

P(treatment b is selected and Hb is rejected) (9)

is an appropriate probability to measure a trial success.
However, the reality of clinical trials is more complex than that. A typical situation is one where

�i is an efficacy parameter, but the ‘quality’ of a treatment also depends on safety considerations
(e.g. the frequency of adverse events associated with different treatment regimens or different
doses). Such safety concerns are often hard to quantify and even if they are, it is not always
clear how to combine safety and efficacy parameters into a single parameter �i . In such situations,
the investigation of the operating characteristics of a planned clinical trial should include the
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calculation and/or simulation of multiple power concepts, including (9) as well as (7) and (8)
in the context of adaptive designs for confirmatory trials. Ultimately, the totality of information
needs to be discussed with the clinical team to justify a reasonable sample size and to ensure a
successful trial according to the trial objectives.

4.2. Conditional power and sample size reestimation

In the interim analysis it is tempting to determine the conditional power to reach a rejection in
an on-going trial given the observed results. In multi-armed clinical trials the precise meaning of
the conditional power depends on the precise definition of the overall power. For example, the
conditional rejection probability to reject an elementary null hypothesis Hi is given by CRPi =
P�̃i

(Hi is rejected|X1), where X1 denotes the first stage sample and �̃i denotes the true effect size.
For simplicity, the conditional power concept will be illustrated for the case of comparing one

treatment versus control using a two-stage combination test C(p1, p2). Hence the conditional
power to reach a rejection in the final analysis given the first stage p-value p1 is

CRP=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, p1��1∫ 1

0
1[C(p1,y)�c]dF �̃

p2(y), �1<p1��0

0, p2>�0

(10)

where F �̃
p2 denotes the distribution of the second stage p-value p2 which depends on the true effect

size �̃. Note that for �̃=0 the conditional rejection probability in (10) reduces to the conditional
error function in Section 3.2.3. Since the true effect size �̃ is unknown, the conditional power CRP
may be calculated by using the effect size for which the study has been powered in the planning
phase, or by using an interim estimate of the true size (or a combination of both). The estimates of
the conditional power based on the interim effect size estimate are highly variable, depending on
the first stage sample size [51]. Their use as a decision-making tool for possible adaptations should
therefore always be supported by computations or simulations of the operating characteristics with
respect to a success probability. Several authors have proposed to reassess the second stage sample
size such that the conditional power is controlled at a pre-specified level. However, such sample
size rules can be very inefficient and may lead to large average and maximal sample sizes unless
appropriate early stopping rules and upper sample size limits are applied [52, 53]. Alternatively,
prediction intervals conditional on the interim results can be computed [54] or Bayesian predictive
power probabilities can be used [55, 56] to better quantify the uncertainty of the interim results.
For a discussion of different sample size reassessment rules, we refer to [12] and the references
therein for further details.

Numerical example (continued). We come back to the numerical example from Section 3.4 to
illustrate the calculation of the conditional power, assuming that only the high dose group i =3
and placebo i =0 are continued to the second stage. To this end, we plug in the desired effect size
from the planning phase (�̃=2, see Section 2) for the true unknown effect sizes in (10). In our
specific example of selecting the best treatment and due to properties of the selected closed test
procedure, we know that a rejection of the intersection hypothesis H{1,2,3} implies a rejection of
all other relevant (intersection) hypotheses H{1,3}, H{2,3} and H3. Thus, it is sufficient to calculate
the conditional power for H{1,2,3} only. Based on the interim data shown in Table I the conditional
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power is then given by

CRPH3 = P�̃=2(H3 is rejected with the adaptive closed test|X1)

= P�̃=2(C(3p1,3, p2,3)<c|X1)

= P�̃=2(C(0.0147, p2,3)<c|X1)

= 1−�

(
�−1(1−c)−w1�

−1(1−3p1,3)

w2
− �̃

�

√
n2
2

)

= 0.96

Since the conditional power is persuasive enough we retain the pre-planned second stage sample
size n2=71. Note that in general the closed test can imply a more complicated rejection region,
in which case the calculation of the conditional power requires either multidimensional integration
or simulations.

4.3. Statistical considerations for interim decisions

It is a difficult, if not unsolvable, problem to completely foresee at the design stage of a clinical
trial the decision processes at an interim analysis. At this stage we often do not know, for example,
how many and in which way treatments will be selected at interim, since other considerations than
the observed efficacy results may influence the decision. For example, safety concerns may arise at
interim and suggest to continue with the treatment having the smaller observed interim effect size.
Thus, scientific expert knowledge not available at the planning phase and unknown random event
processes in the background will in general influence the interim decision process. Nevertheless, it
is essential to understand the operating characteristics of an adaptive design before the start of an
actual trial. To evaluate them properly, one typically has to rely on simulations, which of course
depend on the study design under investigation and on the (unknown) interim decision rules. In
the following we propose a general framework that helps formalizing such simulations, so that the
impact of different interim decision rules can be quantified and evaluated. The proposed framework
consists of three steps and for the sake of illustration we use again the standard application of
comparing several treatments with a common control.

First, a ranking scheme has to be implemented, which ranks the experimental treatment arms.
Different ranking schemes are possible, the most natural being the observed (standardized)
treatment-control mean differences at interim. Alternatively, one could compute the probabilities
P(treatment i has rank j), where the one with largest probability of being best is assigned rank 1,
from the remaining treatments, the one with largest probability of being best is assigned rank 2,
and so on. Predictive probabilities of success can help quantify the success probabilities at the
end of the study given the observed data at interim, see [19, 20] for applications in the context
of confirmatory adaptive designs. More complex ranking schemes taking safety into account or
assessing cost–benefit ratios are also possible. If the treatments correspond to increasing dose
levels of an experimental drug, modeling approaches can be used to better predict the expected
treatment means [57].

Second, it is proposed to define the number of retained treatments once their ranking is avail-
able. One possibility is to define a probability vector r= (r1, . . .,rk), where 0�ri�1 denotes the
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probability of retaining i treatments and
∑

ri =1. If, for example, r1=1, exactly one treatment
is selected at interim; if rk =1, all treatments are selected for the next stage. Note that r can
also depend on the distance of the measures from the first step. For example, if two observed
standardized differences are similar, it is likely to continue with both arms. In addition, clinical
relevance thresholds can be included as necessary conditions for a treatment arm to be selected.

Third, after having ranked the treatments and decided on the number of treatments to be carried
forward (through the r vector), one needs to formalize which treatments actually to select at
interim. One possibility is to specify a probability vector s= (s1, . . .,sk), where 0�si�1 denotes
the probability of retaining the i th best treatment arm according to the selected ranking scheme.
Consider, for example, a study with k=3 experimental arms. If r = (1,0,0) and s= (1,0,0), we
select the best ranked treatment at interim. Suppose otherwise that the clinical team is reluctant
because of possible unexpected safety problems and they assume a probability 0.3 for this to
happen. Thus, they may consider two arms to be retained at the interim analysis, i.e. r = (0,1,0),
and s= (0.7,0.2,0.1). We would then have a probability 0.7 of picking the best performing study
arm, 0.2 of picking the second best and 0.1 of picking the third best. Having picked the first
arm to be retained we pick from the remaining two arms with their probabilities renormalized. If
treatment 1 is picked as the first arm, s is renormalized to (0,0.67,0.33).

5. A SIMULATION STUDY

In this section, we report the results of an extensive simulation to illustrate some of the methods
described previously, motivated by the case study introduced in Section 2 and covering a wide
range of practical scenarios. In Section 5.1, we describe the design of this simulation study,
including its assumptions and scenarios as well as the performance metrics used to evaluate different
statistical operational characteristics of the various methods. The results of the simulation study
are summarized in Section 5.2. Because of the large number of scenarios and performance metrics,
only a subset of the possible plots is included here to illustrate the key findings. We conclude the
simulation study with a few remarks in Section 5.3.

5.1. Design of simulation study

Motivated by the case study from Section 2, consider the comparison of k=2 and 3 treatments
with a control in the homoscedastic normal model with known common variance �2. Let n denote
the pre-specified total group sample size. For simplicity we choose n such that the individual
treatment-control comparisons have a power of 1−�=0.80 for a one-sided z-test with �=0.025.

That is, we calculate n=2(z1−�+z1−�)
2�2/�̃

2
, where zc denotes the c-quantile of the standard

normal distribution and �̃ is the treatment effect to be detected. For the simulation study we
assume �=6 and �̃=2, resulting in a total sample size of n=142 per treatment group. We further
assume a two-stage design with one interim analysis. No early efficacy testing in the interim
analysis is foreseen. We do, however, investigate the impact of non-binding early futility stopping
on power. The subsequent results are obtained by simulating 100 000 trials for each scenario using
SAS/IML.

Based on the considerations in Section 4.1, we compute (i) the probability to reject correctly at
least one of the hypotheses under investigation at the final analysis (disjunctive power) and (ii) the
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probability to reject correctly a specific elementary null hypothesis (individual power). We also
considered other power measures, but the results are not reported here. We consider the following
decision rules to be adopted in the interim analysis:

(I) Continue with all treatments in the second stage.
(II) Select the best treatment based on the observed first stage mean values.
(III) Select the best treatment only if the mean difference to control is above a threshold �.
(IV) Select all treatments where the mean difference to control is above �.

The threshold � reflects a (non-binding) early futility stopping rule. It may happen that none of the
treatments achieves the threshold, in which case the study would be stopped for futility. In reality,
we typically do not know the value for � since it is not a formalized threshold pre-specified at the
design stage of a trial, as explained in Section 4.3. Nevertheless, one should investigate the impact
of � via simulation to better understand the operating characteristics of the employed adaptive
design.

The following test procedures are investigated in the simulation study:

(A) Adaptive combination test using Dunnett adjusted p-values for the intersection hypotheses
at each stage and combining the stagewise p-values using the inverse normal method with
weights wi =√

ni/(n1+n2) corresponding to the pre-planned sample size fractions. Note
that the Dunnett test for the second stage reduces to the z-test if only one treatment is
selected.

(B) The single stage Dunnett test with treatment selection at interim, which uses Dunnett
critical boundaries accounting for the pre-specified number k of treatment-control compar-
isons. Note that dropping a treatment in a single stage design means that one accepts the
corresponding null hypothesis. That is, the associated test statistic is set to −∞.

(C) Separate phase II/III design, where the information of the first stage (phase II) is only used
to address the question of how many and which treatments to investigate in the second stage
(phase III). For the final analysis only the second stage data are used. We use the Dunnett
test in the final analysis to adjust for the number of active treatments actually continued
to the second stage. For example, if two active treatments are selected at interim, the final
analysis uses the Dunnett test for two treatment-control comparisons. If only one active
treatment is selected, the second stage data are tested using a z-test.

For methods (A) and (C) a sample size reassessment can be performed in the interim analysis
without compromising the overall type I error rate. In the simulations we investigated a sample
size reallocation strategy in case that treatments are dropped in the interim analysis. In such cases
we reallocate the subjects originally assigned to the discontinued treatments at stage 2 evenly to
the selected treatments (including the control group). It is thus ensured that the total number of
observations in the trial is constant N =kn.

5.2. Simulation results

From the many different scenarios investigated in the simulation study (corresponding to different
combinations of methods, performance metrics, interim decision rules, etc.) we decided to report
in detail the results for four scenarios (corresponding to Figures 3–6) to illustrate the key find-
ings. Let �i denote the mean of treatment group i =0,1,2, (3), where i =0 denotes the control
group.
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We first compare methods (A)–(C) with and without reallocation for decision rules (I) and (II),
two different information fractions n1/n= 1

3 ,
1
2 for the interim analysis, and (�0,�1,�2)= (0,�,2),

where �∈[0,3] and k=2 (Figure 3). When selecting both treatments, the single stage procedure
(B) has a higher power than the competing methods. The difference between methods (A) and (B)
decreases for increasing values of �. The slight reduction in power for method (A) in comparison
with (B) for small values of � might be acceptable due to the gain in flexibility. When selecting
the most promising treatment, method (A) is more powerful than the single stage Dunnett test (B),
since for method (A) no multiplicity adjustment for the second stage data has to be applied. In
contrast, for method (B) we have to account for the pre-specified number of k treatment-control
comparisons regardless of whether and how many treatments are dropped at the interim analysis.
Comparing the timing of the interim analysis at n1/n= 1

3 (first row) with n1/n= 1
2 (second row)

shows a large impact on the power for the separate phase II/III design (C), where only the data of
the second stage are used for the final analysis. Note that even a sample size reallocation strategy
can hardly compensate for the loss in power as compared with methods (A) and (B). Performing
sample size reallocation with method (A) leads to a largely increased power, which is even larger
than the power for method (B) when selecting all treatments and using the same total sample
size. Because of the relatively small power differences between methods (A) and (B) and in order
to illustrate here only the key findings, we omit method (B) in the subsequent summary of the
simulations for k=2. Instead, we refer to [49, 58] for further results.

In Figure 4 we compare the disjunctive power (i.e. the probability to reject at least one false null
hypothesis) of methods (A) and (C) for decision rules (II) and (III) and different efficacy profiles,
k=2, where the interim analysis is performed after n1=n/2 patients per treatment group. If
decision rule (II) is applied (Figure 4; top row) we observe that the power increases symmetrically
in both �1 and �2, as expected. Note that the power for the combination test is substantially larger
than for the separate phase II/III design. In the bottom row of Figure 4 we plot the disjunctive
power for methods (A) and (C) for different values of the non-binding futility threshold � when
applying the decision rule (III). Increasing the value of � makes it more difficult to proceed to the
second stage, thus leading to smaller power. If �=0 we proceed to the second stage with the most
promising treatment only if at least one of the observed treatment-control difference at interim is
positive. Note that for small fixed value of � the power is not monotonous in �1: The power first
decreases in �1 and then increases for large values of �1. The treatment selection probabilities (not
reported here) explain this behavior. For values around �1=0 the more efficient treatment i =2
(with �2=2) is almost always selected in the interim analysis. With increasing values of �1, the
probability of selecting treatment i =1 (which has a lower efficacy) increases. This reduces the
disjunctive power of rejecting at least one null hypothesis for small values of �1. Note that this
phenomenon can be observed in Figure 3.

In Figure 5 we investigate the impact of the timing for the interim analysis on the disjunctive
power for k=2 when selecting the best treatment at interim (decision rule (II)). We start considering
method (A) without sample size reallocation (top left graph). For a fixed value of �1 the power
increases with increasing information fraction n1/n. From a power perspective these results suggest
to not perform an interim analysis at all. This is to be expected, since we select the better of the
two treatments at interim and dropping a treatment arm leads to a reduction of the total sample
size, thus leading to a smaller power. Note however that the decrease in power is negligible for
n1/n>1

2 while the total sample size is substantially decreased for smaller information fractions.
When including sample size reallocation, however, the total sample size of the trial is constant
(=3n). Now an adaptive design leads to substantial power gain, as depicted in the bottom left
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graph of Figure 5. Consider a fixed value for �1, say, �1=1, and compare the power values
for different information fractions. One notes that for increasing values of n1/n the power first
increases and then decreases. For �1=1 (and recalling that �2=2 throughout), the maximum power
is approximately 80 per cent, which is achieved at about n1/n=0.4. Note that the maximum power
and the optimal interim time point depend on the (unknown) efficacy profile. For example, for
�1=0, the maximum power is approximately 82 per cent, which is achieved after observing about
one-third of the patients. For the separate phase II/III design (C) (right column in Figure 5), we
observe similarly that the power is not monotone in n1/n for a fixed value of �1, irrespective of
whether sample size reallocation is applied or not. Note however that for large fractions n1/n the
sample size of the second stage decreases to 0. Since the final analysis uses only the second stage
data, the power thus quickly goes to 0. Finally we note that method (A) depends much less on the
information fraction n1/n than method (C), thus being more robust. This can be concluded from
the almost vertical contour lines observed in the left column of Figure 5, as opposed to the almost
horizontal contour lines in the right column.

In Figure 6 we summarize some results for the case of comparing k=3 treatments with a control
when using decision rule (IV) with �=0, selecting at interim those treatments for the second
stage which have a positive treatment-control difference. Thus, either 0, 1, 2, or 3 treatments can
be selected for the second stage, depending on the observed interim results. The left plot displays
the disjunctive power for methods (A)–(C). As for the case k=2 in Figure 3, both methods (A)
and (B) lead to substantially larger power than method (C). Note, however, that here the impact
of sample size reallocation is smaller since in most cases we select at least two of the active
treatments. For example, if �=0 and thus �1=�2=0, the probability is 50 per cent to select
treatment i =1,2 for the second stage. Since the probability to select treatment i =3 (�3=2) is
almost 1, the resulting probability to select at least two treatments is 75 per cent in this case. So far
we considered only the disjunctive power. Alternatively, one might be interested in the individual
power as displayed in the right plot of Figure 6 for method (A). Clearly, the individual power
curves follow the relative efficacy profiles. For example, the individual power for treatment i =1,2
(�1=�/2,�2=�) increases monotonically in �∈[0,3]. Note that although �3=2, the individual
power for treatment 3 is not constant, but depends on �: Applying the closed test procedure for
method (A) induces dependencies among the decisions for the elementary hypotheses by testing
the intersection hypotheses. Note also that sample size reallocation only leads to a noticeable
power increase for treatment 3 and small values for �, since the probability to select all three
treatments for the second stage quickly goes to 1 for large values of �. Similarly, treatment 1 never
benefits from a sample size reallocation, since if treatment 1 is selected, the other two treatments
are selected as well.

5.3. Concluding remarks

In the comparison of strategies (A), (B) and (C) we allow sample size reallocation for (A) and
(C), but not for (B). The reason for doing so is that a strategy like (B) may result in a substantial
inflation in size when allowing for other adaptations than considered here, including sample size
reassessment. For a single treatment-control comparison, Proschan and Hunsberger [16] have
shown that the maximum type I error rate can exceed 2�.

It is worthwhile pointing out that the simulation study is based on assumptions, which in practice
are not always satisfied. Motivated by the case study from Section 2, we considered combined
phase II/III studies that would be most applicable when the same patient population and the same

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. (2009)
DOI: 10.1002/sim



CONFIRMATORY CLINICAL TRIALS

primary endpoint are investigated in both phases. In practice, however, the distinction between
phase II and phase III is unlikely to be just a sample size determination after phase II results are
obtained. Often, phase II has narrower patient population likely to have a larger treatment effect
size, uses surrogate endpoints instead of clinical endpoints that take much longer time to observe,
in addition to selecting dose regimens. For a discussion of such issues and related simulations, we
refer to [59].

Also, in current clinical practice substantially fewer patients are investigated in phase II than
in phase III. As seen from the simulation study, combining the data from both phases leads to
negligible power increase for small information fractions (say, n1/n≈0.1 or less). One may argue
that larger information fractions are not relevant in pharmaceutical practice and the comparisons
involving method (C) thus become obsolete. But given a total sample size N =kn for phase II
and III, the simulations also suggest that there is an optimal trade-off between power gain and
sample size savings somewhere around n1/n≈0.5, depending on the effect sizes, the interim
decision rules, whether sample size reallocation and/or early stopping (for futility or success) is
foreseen, etc. In essence, from a power perspective it is thus advantageous to have the interim
analysis not too early for given N and consequently the size of the first stage (phase II) relative
to the second stage (phase III) should be larger than customary in current practice. Coupled with
that, a more precise treatment or dose selection at interim is to be expected since a larger body of
evidence is available when choosing a later time point for the interim analysis.

When it comes to the decision, whether or not to apply an adaptive design, it is important
to ensure that the finally chosen design adequately addresses the primary study objectives. The
conduct of extensive simulations, similar to the ones reported here, are then of critical importance
to understand and compare the operating characteristics of different design options and interim
decision strategies. In the end, the final decision depends on many considerations and not all of
them are of statistical nature (see also Section 7). But well-planned and extensive clinical trial
scenario evaluations are likely to support the interdisciplinary discussions. Substantial lead time
for their conduct should be devoted at the planning stage.

6. ESTIMATION

An open question in adaptive designs is the construction of adequate point estimates and confidence
intervals for the treatment effects of interest. These will be reviewed below with the understanding
that research is still ongoing and the results may soon be outdated. This section is somewhat more
technical than the previous ones because no established methods for point estimates and confidence
intervals exist and some of the reviewed methods require a more involved notation. We refer to
the original papers for simulation studies comparing the different methods.

6.1. Point estimates

Interim adaptations in clinical trials will have an impact on the estimates of treatment effects. This
is obvious in the case of treatment arm selection based on the observed effect size at interim,
but it is also true for other types of adaptations. Consider as an example a clinical trial that aims
at inference on the treatment effects �i for which (asymptotically) normally distributed sample
estimates X̄ j,i are available. To be more precise, consider

X̄ j,i ∼N(�i ,�
2/n j ) (11)
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where n j denotes the (balanced) group samples sizes at stage j and n j/�2 is the information on
�i from stage j=1,2. In the context of the case study from Section 2, the X̄ j,i would simply
denote the estimated means per treatment arm i and stage j and �i would denote the true mean of
treatment i . Equation (11) gives the marginal distributions of the X̄ j,i . These may be correlated
(for example, if the parameters �i denote differences between several treatments and a common
control). In addition, not all combinations of i and j are necessarily available if treatment arms
are dropped or if the trial is stopped early.

Note that the estimates X̄ j,i are unbiased. Thus, if unbiasedness is the only issue, then for any
given treatment i , both X̄1,i and X̄2,i are unbiased estimates of �i , irrespective of the decisions
made at an interim analysis. Unfortunately, of course, the stagewise means X̄ j,i are not an efficient
estimate of �i , if treatment i is investigated in both stages. In the following, we discuss the impact
of different types of modifications on the estimation of treatment effects.

6.2. Sample size reestimation

For simplicity, we will discuss in this section the case of just one treatment (or a treatment versus
control difference) whose expected value is denoted by �1. Assume a two-stage trial where, based
on the results of the interim analysis, the originally intended second stage sample size n2 is modified
to ñ2. Irrespective of the decision rule used to modify the sample size, the maximum likelihood
estimate (MLE) of �1 is given by �̂1= (n1 X̄1,1+ ñ2 X̄2,1)/(n1+ ñ2) [60]. This estimate will only
be unbiased (i.e. the expected value of �̂1 is �1) if either ñ2 is identical n2 (i.e. the originally
planned second stage sample size remains always unmodified), or the sample size reassessment is
made independent of X̄1,1. The latter, for example, is (approximately) the case if the sample size
reassessment is based on the usual (pooled) variance estimate for the common variance �2 of the
treatment group(s). If the sample size reestimation is based on X̄1,1 directly, �̂1 is typically biased.
A bias is also observed if the reestimation depends on a measure that is correlated with X̄1,1. One
practically relevant example of the latter is the case of blinded sample size review where the total
variance ignoring group differences is used to reassess the sample size in a trial which compares
a treatment with a control [61].

An upper bound for the bias of the MLE is given by

�√
2� ·n1

(
n1

n1+n2,min
− n1
n1+n2,max

)

where n2,min�ñ2�n2,max are pre-specified lower and upper bounds on the second stage sample
size ñ2 [60]. It is shown by simulations that the MLE has good properties with respect to its mean
squared error (MSE). The variance and bias of the MLE are unknown for unspecified sample size
reestimation rules, but simulations indicate that the bias is small relative to the variance.

We now consider two alternative estimates to the MLE. The mean-unbiased estimate

�̂1u =u X̄1,1+(1−u)X̄2,1, 0�u�1

uses fixed weights u and 1−u for the stagewise means. For example, if the inverse normal

combination function (3) is used for testing with weights w1 and w2=
√
1−w2

1, it is natural to
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use u=w2
1 for the mean-unbiased estimate. However, it has been shown that �̂u does not behave

well in terms of the MSE [60]. The median-unbiased estimate (MEUE) is given by

�̂1m = w1
√
n1 X̄1,1+w2

√
ñ2 X̄2,1

w1
√
n1+w2

√
ñ2

, w2
1+w2

2 =1, w1,w2�0 (12)

Simulations indicate that this estimate seems to perform reasonably well with respect to the MSE
[60]. Note that �̂1m is a compromise that ‘shrinks’ �̂1u toward �̂1. To see this, suppose that there
is an ‘intended’ second stage sample size n2 which is specified in the planning phase of the trial.
We would then use the weight u=n1/(n1+n2) for the mean-unbiased estimate. For the MEUE,
we would use w1=√

n1/(n1+n2), resulting in the weight

w1
√
n1

w1
√
n1+w2

√
ñ2

= n1
n1+

√
n2ñ2

for �̂1m . Recalling that the weight for the MLE is given by n1/(n1+ ñ2), we see that the relations

n1
n1+ ñ2

<
n1

n1+
√
n2ñ2

<
n1

n1+n2
if ñ2>n2

and
n1

n1+ ñ2
>

n1
n1+

√
n2ñ2

>
n1

n1+n2
if ñ2<n2

hold for the weights of �̂1, �̂1m , and �̂1u , respectively.
If n2,min=0, there is a positive probability that the trial is stopped after the first interim analysis.

In this case the mean-unbiased estimate �̂1u cannot be calculated if X̄2,1 is not available due to
ñ2=0. The median-unbiased estimate �̂1m is formally defined for ñ2=0 and equals X̄1,1 in this
case, although it will no longer be ‘median unbiased’. Note that, however, with only one additional
observation the estimate �̂1m would become median unbiased. Since the influence of one additional
observation on �̂1m is typically small (for reasonably large n1), the estimate �̂1m will not exhibit
a large median bias even if ñ2=0 is possible.

Several suggestions for bias-corrected estimates are available [62–64], which either attempt to
correct the bias approximately or deliberately over-correct for it (i.e. deliberately underestimate the
true treatment effect). If the stopping rules are made explicit and declared as binding in advance,
some improvements like explicit analytical expressions for the bias of the MLE [65], and some
improved estimators exploiting the stopping boundaries [60, 66] are available. However, these
estimators are somewhat complicated to derive, have no closed-form representation and usually
only address one requirement (e.g. median unbiasedness or truncation adaptable unbiasedness)
with other properties unknown or unfavorable.

The inclusion of early stopping further complicates the derivation of adequate point estimates
and no fully satisfactory solution seems to exist. We thus recommend to report the MLE or the
MEUE, keeping in mind that these can be biased. Note that if stopping occurs after the first stage,
the MLE and the MEUE coincide.

Numerical example (continued ). To illustrate the proposed estimates we revisit the numerical
example from Section 3.4. For simplicity, we consider only the largest dose level (treatment i =3
in Section 3.4), ignoring the two intermediate dose levels i =1,2. Recall that the observed first
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Table II. Impact of different sample size reassessment strategies on various point estimates.

Pre-planned sample size Sample size increase Sample size decrease

n2=71 ñ2=2n2=142 ñ2=35

Maximum likelihood (�̂1) 2.25 2.13 2.37
Mean-unbiased (�̂1u) 2.25 2.25 2.25
Median-unbiased (�̂1m) 2.25 2.19 2.31

stage mean value is 2.6 and the second stage mean is 1.9. To illustrate the impact of different
sample size reassessment strategies on the various point estimates, we consider the pre-planned
sample size for the second stage (n2=71), an increased second stage sample size ñ2=2n2=142
and a decreased second stage sample size ñ2=35. The weights for the mean-unbiased estimate are
given by the pre-planned stagewise sample sizes with u=n1/(n1+n2). The results are shown in
Table II for three different point estimates. If no sample size reassessment is performed, all three
estimates are identical. If the sample size is changed at the interim analysis, the median unbiased
estimate is a compromise between the two others, as discussed above.

6.3. Treatment arm selection

In multi-armed clinical trials, where treatments can be dropped at an interim analysis based on
the unblinded interim data, the second stage sample size ñi2 of a treatment arm i depends on
the interim data. For instance, dropping treatment arm i implies ñi2=0. It is also common to
reassess sample sizes for the selected treatments (e.g. to reallocate the pre-planned sample sizes
of the dropped treatment arms to the selected treatment groups). Hence, estimates in trials with
treatment selection are similarly affected as in trials with sample size reassessment and exhibit
similar marginal statistical properties. For instance, the MLE and MEUE of a specific treatment
i perform well in terms of the marginal MSE, and the marginal median of the MEUE is close to
the true treatment effect, also in trials with treatment selection.

The statistical properties of the estimates for the selected treatment(s) are another concern in
clinical trials with treatment selection: when selecting the treatment with the largest observed
effect at the interim analysis then the final MLE for the selected treatment will exhibit a positive
mean bias. This bias is due to the selection process and the use of the interim data in the
MLE. Hence, we call it selection bias. The selection bias is closely related to the publication
or reporting bias caused by not reporting (or under-reporting) statistically non-significant results.
Since the selection of treatments is based on the interim data whereas statistical significance
is based on all data, the selection bias is smaller than the reporting bias. The selection bias is
most relevant if effects are reported only for the selected treatments and omitted for the dropped
treatments. The problem may be mitigated if estimates are reported for all treatments whereby the
effect of the dropped treatments is estimated from the interim data. (Although the bias from the
sample size reassessment remains of relevance also in this case.) If, however, effects of several
treatments are similar, the selection bias can be substantial and confidence in the MLE might be
limited.

Regarding the MLE, the selection bias is largest if treatments have identical effect. It goes to 0
as differences between treatments go to infinity. The selection bias is avoided by the uniformly
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minimum variance conditional unbiased estimate (UMVCUE). The UMVCUE is defined as an
estimator of the effect of the selected treatment which is unbiased conditional on the order of
treatments with respect to the mean effects from the first stage. Among all estimators unbiased
in this sense, it has minimum variance. Since conditional unbiasedness is a stronger requirement
than unconditional unbiasedness, the UMVCUE is also unconditionally unbiased. It is given by

�̂(i) = �2
2 X̄1,(i)+�21Y

�21+�22
− �22√

�21+�22

	(Wi,i+1)−	(Wi,i−1)

�(Wi,i+1)−�(Wi,i−1)
(13)

where

Ws,i = 1

�21

⎛
⎝�2

2 X̄1,(s)+�21Y√
�21+�22

−
√

�21+�22 X̄1,(i)

⎞
⎠ , X̄1,(0) :=∞ and X̄1,(k+1) :=−∞

k denotes the number of treatments at the start of the trial and 	,� denote the standard normal
density and distribution function, respectively. Here, X̄1,(i) denotes the effect estimate of the
treatment with the i th largest observed effect at the interim analysis and Y ∼N(�(i),�22) denotes the
second stage effect estimate of the selected treatment. Formula (13) gives a conditionally unbiased
estimate for all explicitly selected treatments. That is, it can be applied for interim decision rules
that pre-specify in advance to continue the best, the best two, etc. treatments to the second stage.
It can also be applied if the treatment with the largest effect is not among those continued to the
second stage.

If equal variance �2 is assumed for every treatment, then �21=�2/n1 and �2
2=�2/n2, where n j is

the common sample size per group in stage j . The UMVCUE is due to Cohen and Sackrowitz [67],
who derived it for selecting the best of k treatments and under the assumption that n1=n2. Their
proof can be extended to yield the stated results. It can also be extended to the case of unequal
sample sizes per treatment arm in the first stage [68]. Note that if more than one treatment
arm is selected at the interim analysis, the UMVCUE, while still being unbiased, displays some
undesirable properties; in particular, it is not the minimum variance estimate anymore.

In terms of MSE, the UMVCUE is inferior to the MLE. On the other hand, its MSE conditional
on the selected treatment is much less sensitive to the treatment selection than the conditional MSE
of the MLE. If the wrong treatment is selected, the conditional MSE of the MLE given this choice
quickly becomes very large. This tendency is also present, but much weaker for the UMVCUE.
Closed-form expressions for the variance of the UMVCUE are not available, but approximations
can be derived [68].

To illustrate the previous discussion, we calculated the bias and the MSE for both the UMVCUE
and the MLE in case of two treatments with selection of the better treatment at interim. For
simplicity we assume that the two treatment estimates X̄1,1 and X̄1,2 from the first stage are
distributed according to N(0,1) and N(�,1), respectively. We further assume that the second
stage treatment effect estimate is given by Y as explained above, with �22=1. This corresponds
to the situation where the interim analysis is performed after 50 per cent of observations in
the selected treatment arm. The results are displayed in Figure 7. In this situation, the bias of
the MLE is given by (1/

√
2)	(�/

√
2). The bias of the UMVCUE is 0 by construction. The

two curves for MSE are the ‘conditional’ MSEs, that is, the mean-squared deviations of the
estimate from the selected treatment mean, conditional on the selection (see [13] for a formal
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Figure 7. MSE and bias of effect estimates after treatment selection at interim.

definition). For the MLE, this is 0.5 in our situation. As seen from Figure 7, the MLE has a
larger bias as compared with the UMVCUE, but a smaller MSE and vice versa. This under-
pins the difficulties in estimating the treatment effects. Which estimates to consider needs to be
decided on a case-by-case basis, where at least bias and MSE should be balanced against each
other.

6.4. Repeated confidence intervals

Just like point estimation, interval estimation is also affected by trial modifications made after an
interim analysis. Several suggestions have been made. Repeated confidence intervals (RCIs) for a
parameter � of interest are defined as a sequence of confidence intervals I j , j =1,2, which fulfill

P(�∈ I j for both stages j=1,2)�1−�

for all � [69]. Repeated confidence intervals can be obtained based on the duality of confidence
intervals and hypothesis tests. In the following we first consider the univariate case for a single
parameter of interest and then consider the problem of deriving simultaneous confidence intervals
for multiple parameters.

6.4.1. Univariate confidence intervals. Assume that a combination test for

H :�1−�0�0 against K :�1−�0>0

has been performed at level �. To construct simultaneous confidence intervals for the treatment-
control difference �=�1−�0, we define for all parameters 
 the hypotheses pair

H(
) :��
 against K (
) :�>
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For each 
 let p1(
) and p2(
) denote the first and second stage p-values for H(
). For example,
in a treatment-control comparison with a normally distributed endpoint and balanced group sizes
the first stage z-test p-value is

p1(
)=1−�[√n1(x̄1− x̄0−
)/
√
2�]

and p2(
) is defined by analogy. Here, p2(
)=1 if no second stage data are available. Now, given
the stagewise p-values are monotone in 
, a 100 per cent (1−�) confidence interval is given by
all 
 such that the combination test does not reject the corresponding null hypothesis, i.e.

I ={
|p1(
)>�0 or p1(
)>�1,C(p1(
), p2(
))>c}
As an example, consider a two-stage design for a normally distributed endpoint where the

sample size is reassessed after the interim analysis. If the inverse normal combination function
with �0=1 (no binding stopping for futility) and critical values �1 and c is used, the repeated
(1−�)-confidence intervals are given by[

X̄1−
√
2�z1−�1√

n1
, X̄1+

√
2�z1−�1√

n1

]

if the trial is stopped at interim, and[
�̂1m−

√
2�z1−c

w1
√
n1+w2

√
n2

, �̂1m+
√
2�z1−c

w1
√
n1+w2

√
n2

]

if the trial continues to the second stage [34]. Here, �̂1m is the median-unbiased estimate of the
difference in effect sizes between treatment and control given by (12), n1 and n2 are the (potentially
modified) sample sizes per stage and w1, w2 are the pre-specified weights. If no modification of
sample size is performed, these intervals simplify to the ordinary asymptotic confidence intervals
for 
 at a local level �1 and c. Note that RCIs are conservative in the sense that the true probability
P(�∈ I j for both stages j =1,2) will usually be larger than 1−�.

6.4.2. Other confidence bounds. For group sequential tests there is no unique ordering of sample
points across stages and thus there are many ways to define confidence bounds [3]. Besides
repeated confidence intervals, the monotone confidence interval approach [70] has been applied
to adaptive designs [15]. Repeated confidence intervals are typically strictly conservative but give
valid confidence intervals even if one does not adhere to the pre-specified stopping rules. The
monotone confidence bounds in contrast are exact but can only be computed at stages where a
stopping boundary has been crossed or in the final analysis. The RCIs as introduced in the previous
section based on �̂m may not contain the MLE �̂. Brannath et al. [60] suggest to extend them such
that �̂ is contained. They also discuss other (conservative) methods of constructing CIs based on
the MLE X̄ (e.g. [16]). However, simulations performed by these authors imply that these ML-
based RCIs are wider than �̂m-based CIs for most practically relevant situations (i.e. if sample size
modification that are extremely different from what was originally planned are avoided). Hence,
we recommend the use of �̂m-based RCIs.
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6.4.3. Simultaneous confidence bounds. Posch et al. [13] constructed simultaneous confidence
bounds as follows. Assume an adaptive test (based on the closure of combination tests) of the one
sided hypotheses

Hi :�i −�0�0 against Ki :�i −�0>0, i =1, . . .,k

at multiple level � has been performed. For all parameter vectors 
= (
1, . . .,
k) define

Hi (
i ) :�i −�0�
i against Ki (
i ) :�i −�0>
i , i =1, . . .,k (14)

and let HT1(
)=⋂i∈T1
Hi (
i ) denote the global intersection hypotheses. By the duality of

confidence intervals and hypothesis tests we can obtain a simultaneous confidence region by testing
HT1(
) with an �-level combination test for all possible vectors 
. The set of all 
 for which
HT1(
) cannot be rejected gives a (1−�)100 per cent confidence region. More formally, define
for each 
 the stage-wise p-values p1,T1(
) and p2,T2(
) for the global intersection hypothesis
HT1(
) (if T2=∅ we set p2,T2(
)=1). Now, the confidence region for �i −�0, i =1, . . .,k, is
given by all vectors 
 such that �C [p1,T1(
), p2,T2(
)]=0. To obtain simultaneous confidence
intervals (instead of a general confidence region) we enlarge the confidence region to a rectangle.
To this end we define at each stage j and for all treatments i ∈T1 an adjusted p-value

padjj,i (
i )= sup
�∈Rk ,�i�
i

p j,T j (�) (15)

where �= (�1, . . .,�k). Now, by [13] the simultaneous confidence intervals for �i −�0 are given
by all 
i such that �C [padj1,i (
i ), p

adj
2,i (
i )]=0.

Many p-values of tests for intersection hypotheses as, for example, the Bonferroni, Šidak
or Dunnett test, can be written as a function of the unadjusted individual p-values, such
that for a suitable monotonic function f we have p j,T j (
)= f (p j,1(
1), . . ., p j,k(
k)), where
p j,i(
i ) are unadjusted stage-wise p-values for hypothesis Hi (
i ) (see Section 3.3.2). Then,

padjj,i (
i )= f (1, . . .,1, p j,i(
i ),1, . . .,1) (assuming that lim
l→∞ p j,l(
l)=1 and that the p j,l(
l)

are increasing in 
l for l ∈T1). For example, for the Bonferroni and the Simes test padjj,i (
i )=
min(1, |T j | p j,i(
i )), where |T1|=k and |T2| denotes the number of treatments (besides the

control group) in the second stage. For the Šidak test padjj,i (
i )=1−[1− p j,i(
i )]|T j |.
The practical computation of the simultaneous confidence intervals involves only one-

dimensional numeric root finding. The confidence intervals are computed separately for each
treatment i . First, the 
i are determined that are rejected at the first stage. Assuming monotonicity

of padj1,i (
i ) in 
i this is done by solving the equation padj1,i (
i )=�1 in 
i . Denoting the solution
by 
a,i , all 
i�
a,i can be excluded from the confidence interval. If a binding futility bound is

specified, additionally we need to determine the solution of padj1,i (
i )=�0, denoted by 
b,i . All

i�
b,i have to be included in the confidence interval, since the respective null hypothesis is
accepted already at the first stage. If the trial stops in the interim analysis, or no second stage
data for treatment i are available, the confidence interval for treatment i is given by (
a,i ,∞). If
the trial continues and second stage data for treatment i are available, we compute the solution
of C(padj1,i (
i ), p

adj
2,i (
i ))=c, denoted by 
c,i . Thus, at the second stage all 
i�
c,i that have not

been accepted at the first stage (i.e. where 
i�
b,i holds) can be excluded from the confidence
interval. Thus, the final interval is given by (
lb,i ,∞), where 
lb,i =min(max(
a,i ,
c,i ),
b,i ).
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Note that by enlarging the confidence region to a rectangle the resulting confidence intervals may
be incompatible with the test decision (the confidence interval may not exclude the parameter values
that were rejected in the original multiple test procedure). However, if, for example, Bonferroni or
Šidak tests are used to test the intersection hypotheses and in the interim analysis only the dose
with the smallest interim p-value is selected, then the corresponding confidence interval will be
compatible in the above sense.

Numerical example (continued ). For the numerical example of Section 3.4 the simultaneous
lower confidence bounds can be computed as follows. Let padj1,3(
3)=min{3�[−√

71/2(X1,3−
X1,0−
3)/6],1} and padj2,3(
3)=�[−√

71/2(X2,3−X2,0−
3)/6]. Now, let 
a,3 denote the solution

of padj1,3(
3)=�1, 
b,3 the solution of padj1,3(
3)=�0 and 
c,3 the solution of 1−�{w1�
−1[1−

padj1,3(
3)]+w2�
−1[1− padj2,3(
3)]}=c. After the first stage, all 
3<
a,3 are early rejected and all


3>
b early accepted. Note that 
a,
b are just the standard fixed sample confidence bounds of
the first stage data at level �1/3 and �0/3, respectively. The final lower confidence bound is given
by 
lb,3=min(max(
a,3,
c,3),
b,3). In the example 
a,3=−0.332,
b,3=0.753,
c,3=0.697 such
that 
lb,3 =0.697. Additionally, for the dropped doses 1 and 2, the simultaneous confidence bounds
are given by the standard fixed sample confidence bounds of the first stage data at level �1/3 given
by −2.13 and −1.43, respectively.

7. PRACTICAL CONSIDERATIONS

Many basic aspects for planning and conducting a clinical trial with a confirmatory adaptive design
are the same as in other, more traditional monitoring settings, such as in group sequential trials
[3, 71]. This is in particular true for the need to set up independent data monitoring committees
(DMC), the need to restrict access to the interim analysis results in order to protect the integrity
of the trial and to facilitate quick access and analyses of validated data at interim. Other aspects
of designing and executing an adaptive design, however, may be different, both on the trial level
as well as on the level of a whole drug development program. In the following we discuss some
practical considerations for the implementation of a confirmatory adaptive design.

In order to retain the validity of a confirmatory trial, a strict type I error rate control is mandatory
for an acceptable adaptive design. Proper statistical methodology should thus be applied, such as
the methods reviewed in this paper. This requirement also implies that the experimental questions
and hypotheses to be investigated are well specified upfront in the study protocol. The number
of potential adaptations should generally be kept to a minimum; explorative, hypotheses gener-
ating adaptive designs in a confirmatory drug development phase are not acceptable to regulatory
agencies.

Because of their complexity, both in methodology and logistics, adaptive designs require a
careful preplanning. This includes the amount of pre-specification required in the study protocol
as well as the conduct of extensive simulations for a good understanding of the operational
characteristics. To strictly control the overall type I error rate, it is mandatory to pre-specify the
design of the first stage and how the information across the stages is combined. In addition, it is
essential to concisely describe the study objectives, the response variables and the type of adaptive
designs (e.g. treatment selection, selection of a pre-specified sub-population, etc.) beside other
standard information required in the study protocol. The decision rules allowing early stopping for
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success have to be stated explicitly in the protocol. For other adaptations, like treatment selection
or dropping a dose, this is not the case, since the type I error rate is not affected by the nature of
these rules if appropriate statistical methods are used. This implies that full flexibility is guaranteed
on how to perform the treatment selection at interim, which can thus be based on any evidence
available up to the interim decision point, including information from outside the ongoing trial
if necessary. However, in order to assess the impact of the interim decision rules on treatment
effect estimates and the operating characteristic of the trial, and as a provision of guidance for the
decision makers at interim analyses, potential interim decision rules need to be investigated in the
context of clinical scenario evaluations and requires extensive simulations.

An issue which is still under some debate is the degree of sponsor involvement in the interim
decision process. Some adaptive designs may involve complex decisions that lie in a domain
which is traditionally a sponsor responsibility and in which important sponsor interests may be
involved in arriving at the best decision. For example, currently the evidence available at the
end of phase II will be used to select a combination of dose, application mode, etc. for the
confirmatory phase III studies and thus potentially for the later marketed drug, once it has been
approved. These considerations at the end of phase II are thus business critical and go through
senior decision boards of a pharmaceutical company. With an adaptive design combining phases II
and III some of these decisions have to be taken before starting the trial (and considerably earlier
than in a conventional program), with the notable exception of the remaining uncertainty, which the
interim analyses is supposed to resolve. Current regulatory guidance in more traditional monitoring
settings, such as in group sequential designs, holds that sponsors should not have access to interim
data while trials are ongoing. One concern in the context of adaptive designs is that unanticipated
complexities might not fit a pre-specified algorithm that can be implemented without sponsor
participation. One model on how to implement flexible interim decisions in practice is to include
a proposal of potential interim decision rules in the DMC charter with the understanding that
the DMC has the discretion to deviate from them as necessary and involve the sponsor based
on the following principles: a clear rationale for a sponsor involvement; sponsor representatives
properly distanced from trial operations; clear understanding by all parties involved of the issues
and potential risks; and documentation of the processes followed with restrictive firewalls put
in place. The general aim should be a minimal sponsor exposure sufficient to make decisions,
meaning that the smallest possible number of sponsor representatives should only get involved at
the adaptation point with the minimally relevant information. Such an approach would minimize
the sponsor’s involvement and associated information leakage but still guarantee the sponsor’s
interest in case of unexpected emerging results. We refer to [72] for further details.

Another important aspect when planning a confirmatory adaptive design is to keep the focus on
the project level. Adaptive designs may only be of benefit if sufficient evidence is expected from
the combined phase II/III study as compared to the strategy with a phase II trial that is followed
by a separate phase III clinical trial. Thus, before embarking on a phase II/III study it needs to be
ensured that the totality of information is sufficient to support a submission at the end of phase III.
Accordingly, if an adaptive design is applied to a confirmatory study, a second pivotal trial is
typically needed to replicate the findings of an independent first pivotal trial. An adaptive phase
II/III study thus does not replace the full phase III program. Also, the necessary information on
safety, regimen, mode of application, endpoint, etc., which is needed for a successful confirmatory
phase III, must be collected before the start of the combined phase II/III study.

The decision in favor of an adaptive design or a traditional approach is of course also influenced
by many non-statistical considerations, especially, but not only, operational issues. Among the
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factors that impinge on the decision are, for example, recruitment speed, type of endpoint, the cost
and time consumption of interim analyses (including, for example, requirements such as central
laboratory reviews or extensive data cleaning). Adaptive trials are more beneficial if recruitment is
slow, tedious or expensive, but treatment effect can be measured immediately, than if recruitment
is quick, easy and inexpensive, but it takes time for the treatment to take effect or the endpoint to
be observable (like, for example, in some time-to-event trials). If recruitment is very quick, it may
be necessary to stop it for the sake of an interim analysis. This is considered unattractive by many
clinical trial managers, because closing down and reopening centers creates operational friction.
Slowing down recruitment during this period of time may be a compromise.

In an adaptive trial involving treatment arm selection, there will inevitably be patients who were
randomized to a discontinued treatment, but have not reached the endpoint at the time of interim
analysis. If the time to endpoint is quick, there will of course be fewer such patients. Usually,
such ‘overrunners’ would be allowed to finish their respective treatment and be monitored for
efficacy and safety, unless ethical considerations require that they are switched to a treatment that
has emerged as clearly superior. The same is of course true for a trial that was stopped early for
efficacy.

On an operational level, it is good practice to clearly define the interim safety and efficacy
analyses upfront, limiting them to ones which are really required for decision making. It is also
recommended to synchronise interim analyses for efficacy with regular safety updates, if the latter
are required in an ongoing drug development program.

For manufacturing and drug supply management, adaptive designs pose a challenge because it
is more difficult to predict the amount of drug required in a trial, both overall and by formulation,
treatment regimen etc. Hence, manufacturing and drug supply management should be involved
early in the planning phase of an adaptive trial such that the required resources for a smoothly
executed trial are allocated—and then eventually freed. Of course, the decision on whether to use
an adaptive or a more traditional design also depends on the magnitude of difficulties associated
with drug supply. However, awareness of these issues has recently increased and progress has been
made towards an adaptive drug supply management [73].

Likewise, participating centers need to be informed about the planned trial and made aware of
the impact adaptations might have on their role in the different stages of the trial, especially with
regard to flexible sample sizes. Where the risk/benefit is different in subsequent stages of a trial,
it may also be necessary to ask study participants to renew their informed consent form.

In summary, properly conducted adaptive designs pose a number of operational challenges
with a potential risk of extending the timelines due to the more complex planning, logistics, and
regulatory interactions. Therefore, the rationale for an adaptive design needs to be well justified as
compared to an independent phase II/phase III development program and it needs to be ensured that
the evidence base for regulatory decision making is not diminished when conducting an adaptive
design.

8. DISCUSSION

Pharmaceutical companies, regulatory agencies, ethical committees, the medical community and,
last but not least, the patients are all interested in clinical trials that convincingly establish the
efficacy and safety of a new treatment. All these stakeholders are also interested in an efficient
drug development process, such that an effective new treatment can be made available as early as
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possible to the patients in need. The expectation has arisen that carefully planned and conducted
studies based on adaptive designs are an important tool which can help to fulfil these requirements.
However, apart from the benefits, there are also limitations to the potential use of confirmatory
adaptive designs. We mentioned the mandatory, strict type I error rate control, the pre-specification
of the experimental questions and hypotheses to be investigated upfront in the study protocol
and that adaptive designs in the confirmatory context should not have an explorative, hypotheses-
generating theme as the primary objective. Likewise, logistical hurdles (such as, for example, long
time to assessment of response, fast recruitment, trial integrity issues, drug supply management)
may hinder the application of an adaptive design and need to be considered in detail at the
planning stage. Each adaptive design has its own peculiarities, depending on the specific application.
Although adaptive designs provide more flexibility than traditional designs, they should always
be conducted keeping international guidelines on good clinical practice in mind. In particular,
any adaptive design should ensure the validity and integrity of a clinical study. The best way to
minimise pitfalls and the difficulties associated with adaptive designs is to allocate enough lead
time in order to carefully think through and possibly simulate different scenarios. It is certainly
advantageous to involve statistical and logistical experts for this multidisciplinary effort and borrow
from the experience of those teams which have previously undertaken the planning and execution
of such a trial.

There are many open issues in adaptive designs. One criticism on adaptive designs is that in
case of performing design modification one has to use non-standard test statistics instead of the
common sufficient test statistics [74]. Another concern about confirmatory adaptive designs is that
discrepancies in the results across stages may render the overall results hard to interpret [75],
in particular if it cannot be ruled out that this difference is due to intentional or unintentional
leakage of interim results. To address these concerns the sponsor may be asked to pre-plan methods
which ensure that results from different stages can be justifiably combined. As seen in Section 6,
estimation remains an open topic for research. However, many of the criticisms of adaptive designs
also apply to classically used designs and methods, which in turn have received increased attention
more recently because of the novelty of adaptive designs.

It should be emphasized that the methods reviewed in this paper all control the familywise error
rate strongly at a pre-specified significance level. In the recent past, simulation-based approaches
have been described, which approximate the critical value by simulating a large number of clinical
trials based on pre-specified assumptions. When using such methods, caution is advisable, if the
underlying assumptions are violated or cannot be verified, which is often the case in clinical
practice. For these methods, a strong type I error rate control is usually difficult to assess, even
when performing large-scale simulations. We refer to [76] for a critical discussion of this topic.

Finally, we believe that adaptive designs can lead a higher scientific standard for the design and
conduct of clinical trials. As pointed out by Bauer [77], the current clinical practice is faced with an
irritating large number of protocol amendments, which—as one may argue—have a larger impact
on operational bias, type I error rate control, etc. than a well planned adaptive design following
sound statistical principles and where potential adaptations are considered beforehand.
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