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SUMMARY

For clinical trials with multiple treatment arms or endpoints a variety of sequentially rejective, weighted
Bonferroni-type tests have been proposed, such as gatekeeping procedures, fixed sequence tests, and
fallback procedures. They allow to map the difference in importance as well as the relationship between
the various research questions onto an adequate multiple test procedure. Since these procedures rely on
the closed test principle, they usually require the explicit specification of a large number of intersection
hypotheses tests. The underlying test strategy may therefore be difficult to communicate. We propose a
simple iterative graphical approach to construct and perform such Bonferroni-type tests. The resulting
multiple test procedures are represented by directed, weighted graphs, where each node corresponds to
an elementary hypothesis, together with a simple algorithm to generate such graphs while sequentially
testing the individual hypotheses. The approach is illustrated with the visualization of several common
gatekeeping strategies. A case study is used to illustrate how the methods from this article can be used
to tailor a multiple test procedure to given study objectives. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many clinical trials aim at multiple study objectives, such as comparing several treatments with a
control, investigating multiple endpoints or subgroups, etc. Testing multiple hypotheses, however,
may increase the familywise error rate (FWER), i.e. the probability to erroneously reject at least
one true null hypothesis, beyond the pre-specified significance level �∈(0,1). Adequate multiple
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test procedures have to be used, which guarantee a strong control of the FWER at level � under
any configuration of true and false null hypotheses. A variety of sequentially rejective, weighted
Bonferroni-based test procedures have been proposed, which are powerful and at the same time
flexible enough to address multiple study objectives while controlling the FWER. Examples of such
procedures include the weighted or unweighted Bonferroni–Holm procedure [1], fixed sequence
tests [2, 3], the fallback procedure [4, 5], and gatekeeping procedures based on Bonferroni adjust-
ments [3, 6–8]. Such methods allow to map the relative importance of the different study objectives
as well as their relation onto an appropriately tailored multiple test procedure. As shown by [9], all
these procedures belong to a subclass of weighted Bonferroni-based closed test procedures [10],
which fulfill a mild monotonicity condition on the weights.

Assume that we are interested in testing, for example, four elementary hypotheses H1, . . . ,H4,
which are grouped into a family F1={H1,H2} of primary objectives and a family F2={H3,H4}
of secondary objectives. Assume further that we are interested in testing F2 only if at least one
of the hypotheses in the primary family F1 was rejected. The gatekeeping approach proposed
by Dmitrienko et al. [7] is a reasonable test strategy in this situation. They proposed a specific
weighting scheme for each of the 24−1=15 intersection hypotheses in the full closure (Table I in
[7]), leading to a decision matrix that facilitates the computation of p-values for each intersection
hypothesis (Table II in [7]). Although the proposed gatekeeping procedure takes advantage of the
flexibility of weighted Bonferroni-based closed test procedures, it is often difficult in practice (i)
to communicate it to the clinical teams and (ii) to apply it to similar multiple test problems. In
this article we propose graphical tools to overcome these problems.

The application of graphical tools to multiple test problems has already been investigated before
[11, 12]. In this article we illustrate the use of graphical tools in the particular context of weighted
Bonferroni-based closed test procedures. Using a graphical approach, the elementary hypotheses
are represented by a set of vertices with associated weights representing local significance levels.
The weight associated with a directed edge between any two vertices indicates the fraction of the
(local) significance level at the initial vertex (tail) that is added to the significance level at the
terminal vertex (head), if the hypothesis at the tail is rejected. To illustrate the basic concepts,
consider the weighted Bonferroni–Holm procedure for two hypotheses. Let �1 and �2 denote the
initial significance levels allocated to H1 and H2, respectively, such that �1+�2=�. If H1 is
rejected at level �1, then H2 is tested at level �. Vice versa, if H2 is rejected at level �2, then H1 is
tested at level � [1]. Figure 1 visualizes the weighted Bonferroni–Holm procedure. Note the initial
allocation of the overall significance level � to the individual hypotheses. If, for example, H1 is
rejected, the initially allocated significance level (�1 at the vertex H1) is passed on fully to H2 (as
indicated by the directed edge with associated weight 1).

As a matter of fact, Figure 1 defines both (i) a test for the global intersection hypoth-
esis in the full closure through the initial allocation of the significance level � to the individual

Figure 1. Graphical illustration of the weighted Bonferroni–Holm procedure with two hypotheses.
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Figure 2. Graphical illustration of the gatekeeping procedure from [7] with four hypotheses.

hypotheses and (ii) a sequentially rejective multiple test procedure (since after rejecting, for
example, H1, only H2 remains to be tested). In this sense Figure 1 defines an iterative graph for the
weighted Bonferroni–Holm procedure. This will be illustrated later in more detail with further
examples.

In a similarmanner thegatekeepingprocedure [7] is fully specifiedby thedirectedgraph inFigure2.
The two hypotheses H1 and H2 from the primary familyF1 are initially assigned the local level �/2
each, whereas H3 and H4 from the secondary familyF2 are assigned the local level 0. If H1 and/or
H2 are rejected, the local level �/2 is split into half and passed on to H3 and H4 as indicated by the
directed edges with weights 1

2 . If H3 (H4) is rejected in the subsequence at its local significance level
(either �/2 or �/4), this level is passed to H4 (H3) as indicated by the directed edges with weights 1.
Thus, Figure 2 fully specifies the sequentially rejective procedure from [7].

A graphical approach as displayed in Figures 1 and 2 has several advantages. Graphs are easier
to communicate with clinical teams than long and abstract decision tables, which typically are not
intuitive. Using graphs, one can better explore different test strategies together with the clinical
team and thus tailor the multiple test procedure to the given study objectives. Moreover, study
protocols should be written in such a way that investigators and other personnel distant to the
clinical team are still able to have a basic understanding of the underlying statistical design and
analysis methods. Also note that the decision tables proposed in [7] will quickly become untractable
if the number of hypotheses increases. If, for example, the study objective is to compare four dose
levels with placebo for two endpoints (resulting in eight elementary hypotheses), the decision table
of [7] requires 255 rows whereas the associated graph only requires eight vertices. Finally, using
the results of [9], the iterated graphs proposed in this article always lead to shortcut procedures,
thus making extensive computer programming unnecessary.

In the remainder of this article we formalize the ideas presented in this section and discuss
several applications and extensions. In Section 2 we formalize the graphical approach and present
the main methodological results, including a simple iterative algorithm to conduct a multiple test
procedure derived from a directed graph. In Section 3 we provide various extensions, such as the
computation of adjusted p-values, simultaneous confidence intervals, and further considerations
on shuffling the significance level between families of hypotheses. Numerical examples are used
to illustrate the key results. A case study is discussed in Section 4 to illustrate how the methods
from this article can be used to best tailor a multiple test procedure to the given study objectives.
Concluding remarks are given in Section 5.
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2. METHODOLOGY

In this section we describe the main results of this article. In Section 2.1 we give a heuristic
justification to motivate the use of iterative graphs. This is formalized in Section 2.2, where we
provide a simple algorithm, which essentially results in a sequentially rejective test procedure
associated with an iterated graph. We prove that this algorithm (and thus the multiple test procedure
derived from an iterated graph) strongly controls the FWER at a pre-specified level �. Illustrative
examples are given in Section 2.3.

2.1. Heuristics

Assume that we are interested in testing m elementary null hypotheses H1, . . . ,Hm . Let a=
(�1, . . . ,�m) denote the initial allocation of the overall significance level to the m hypotheses, such
that

∑m
i=1 �i��. Finally, assume that we observe the m unadjusted p-values p=(p1, . . . , pm) for

the elementary hypotheses Hi .
Consider the following heuristic approach. Test the m hypotheses each at its local significance

level �i . If a hypothesis Hi can be rejected, reallocate its level to one of the other hypoth-
esis (according to a pre-specified rule). Repeat the testing step for the remaining, non-rejected
hypotheses with the updated local significance levels, thus possibly leading to further rejected null
hypotheses with associated reallocation of the local significance levels. This procedure is repeated
until no further hypothesis can be rejected. In Section 2.2 we show (after a suitable formalization)
that this heuristic approach indeed controls the FWER strongly at level �.

This heuristic approach is easily described by the directed graphs introduced in Section 1. In
fact, most Bonferroni-based closed test procedures described in the literature are examples of this
heuristic and can thus be displayed graphically. We have already mentioned the connection to the
Bonferroni–Holm procedure and the gatekeeping procedure from [7].

To further elaborate on the (unweighted) Bonferroni–Holm procedure, recall that it rejects all null
hypotheses H(i) with i�r =max{i ∈ I : p( j)��/(m− j+1) for all j�i ∈ I }, where p(1)� · · ·�p(m)

denote the ordered p-values with associated ordered null hypotheses H(i) [1]. Figure 3 displays
graphically the Bonferroni–Holm procedure for m=3 hypotheses and equal initial allocation of
the significance level (i.e. �1=�2=�3=�/3). To illustrate the connection between the graph from

Figure 3. Graphical illustration of the Bonferroni–Holm procedure with m=3 hypotheses
and initial allocation a=(�/3,�/3,�/3).
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Figure 3 and the heuristic approach described above, assume that the p-values p1=0.02, p2=
0.055, and p3=0.012 were observed. Figure 4 displays the resulting sequentially rejective test
procedure for �=0.05. The hypothesis H3 is rejected at the first step, since p3<0.01667=�/3.
The associated local significance level �/3 is split equally and passed on to the remaining (not yet
rejected) hypotheses H1 and H2, as indicated by the directed edges in the left graph in Figure 4. This
reallocation step results in the updated local significance levels �1=�2=�/3+�/6=�/2=0.025,
as depicted in the middle graph in Figure 4. Since p1=0.02<0.025, H1 is now rejected and the
updated local significance level �2=�/2+�/2=�=0.05. The right graph in Figure 4 (consisting
of only one remaining vertex) displays the final step. Since p2>0.05, H2 is not rejected and the
procedure stops.

Note that Figure 3 fully defines the sequentially rejective Bonferroni–Holm procedure (for
m=3), while Figure 4 displays the individual steps of the resulting test procedure once the p-
values were observed. The graph in Figure 3 therefore defines a stepwise test procedure, where the
individual steps can also be visualized, thus leading to an iterative graphical approach to multiple
test procedures, as already indicated in Section 1. Note further that the initial allocation of the
overall significance level in Figure 3 is arbitrary (subject to some regularity conditions specified
below). For example, choosing a=(�,0,0) in Figure 3 leads to a Bonferroni–Holm procedure
applied to H2 and H3, once H1 was rejected before at level �.

2.2. General result

We now formalize the heuristic approach from Section 2.1 and prove that it controls strongly
the FWER at a pre-specified significance level �. As before, let a=(�1, . . . ,�m) denote the local
significance levels, such that

∑m
i=1 �i��. Let G=(gi j ) denote an m×m transition matrix with

freely chosen entries gi j that are subject to the regularity conditions

0�gi j�1, gii =0 and
m∑

k=1
gik�1 for all i, j =1, . . . ,m (1)

The weight gi j determines the fraction of the local level �i that is allocated to Hj in case Hi
was rejected and the transition matrix G thus fully determines the directed edges. Based on the
observed p-values pi , i ∈M={1, . . . ,m}, we define a sequentially rejective test procedure through

Figure 4. Bonferroni–Holm procedure with observed p-values p=(0.02,0.055,0.012) and
overall significance level �=0.05.
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the following algorithm:

Algorithm 1

0. Set I =M .
1. Let j =argmini∈I pi/�i
2. If p j�� j , reject Hj ; otherwise stop.
3. Update the graph:

I → I \{ j}

�� →
{

��+� j g j�, �∈ I

0 otherwise

g�k →
⎧⎨
⎩
g�k+g�j g jk

1−g�j g j�
, �,k∈ I, � �=k

0 otherwise

4. If |I |�1, go to step 1; otherwise stop.

In the Appendix we show that a graph G=(a,G) together with the updating rules from Algorithm 1
defines a short cut for a consonant closed test procedure where each intersection hypothesis is
tested with a weighted Bonferroni test. Together with Algorithm 1, a graph G=(a,G) thus defines
a sequentially rejective multiple test procedure that strongly controls the FWER at level �, where
a and G are subject to the constraints above.

To illustrate the connection between Algorithm 1 and the proposed graphs, consider Figure 5
for an example involving m=3 hypotheses. For the top left graph we have a=(�1,�2,�3) and

G=
⎛
⎜⎝
0 1

2
1
2

0 0 1

0 0 0

⎞
⎟⎠

Figure 5. Example multiple test procedures to illustrate Algorithm 1.
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Assume that H2 is rejected, i.e. j =2 and p2��2. Applying the graph iteratively, the vertex H2
is deleted and the associated significance level �2 is passed along the outgoing edges, according
to the associated weights g2�. In our example, there is only one edge starting from H2 and the
updated vector of significance levels becomes �=(�1,0,�3+�2). At the same time, ‘loose’ edges
are connected and their weights are renormalized to fulfill the regularity conditions (1), ultimately
leading to the top right graph in Figure 5. These updates in the graph are essentially reflected and
formalized in Step 3 of Algorithm 1. In other cases, the graphical update needs more care. Consider
the bottom graph in Figure 5. The only difference to the previous example is the additional edge
from H2 to H1 such that

G=

⎛
⎜⎜⎜⎜⎝
0 1

2
1
2

1
2 0 1

2

0 0 0

⎞
⎟⎟⎟⎟⎠

Note that H1 and H2 are now connected via a circular loop. However, applying Step 3 of Algorithm 1
ensures that after rejecting H2 one essentially obtains the top right graph in Figure 5, but with the
updated vector of significance levels a=(�1+�2/2,0,�3+�2/2).

We conclude this section with five remarks: (i) Algorithm 1 is mainly required to provide a
rule for updating the initial graph G=(a,G) while testing sequentially the m elementary null
hypotheses H1, . . . ,Hm . In many cases sequentially rejective multiple test procedures defined
through Algorithm 1 are characterized by a simple iterative graph G, where the rejection of a null
hypothesis leads to the deletion of a vertex with associated edges (and a related direct update of the
remaining weights). Figure 2 displays such a simple graph, whereas Figure 3 displays an example,
where the update is more complex due to the inherent loops induced by the edges. Such loops
with two edges can occur during the iteration if there is a directed cycle in the graph even if it is
not present initially. (ii) Algorithm 1 specifies weighted Bonferroni-based closed test procedures
satisfying the monotonicity condition from [9] and applying it to the graph iteratively ensuring that
one obtains a shortcut of length m, thus making extensive computer programming unnecessary. (iii)
Sometimes, several hypotheses Hi with pi��i might be rejected at the same iteration step. The
resulting final set of rejected hypotheses is independent of how the single index j is chosen. Taking
the argument of the minimum in Step 1 of Algorithm 1 is a convenient solution, but can be replaced
by any other selection rule. (iv) In essence, the vector a specifies a weighted Bonferroni test for
the global intersection hypothesis HM =⋂

i∈M Hi and the directed graphs specify the weighted
Bonferroni tests for the (m−1)-way intersection hypotheses HM\{ j} =⋂

i∈M\{ j} Hi , j =1, . . . ,m.

This leads to a specification of m2 weights. Since the closed test procedure involves 2m−1
intersection hypotheses, consonant Bonferroni-based closed test procedures can be constructed
for m�4, which are not covered by the graphs proposed so far. However, the graphs can be
extended to include other test strategies, some of which are discussed in Section 3. (v) The graphs
can also be used to tabulate the weights ��/�,�∈ I , for all intersection hypotheses HI , I ⊆M ,
of the full closure by removing the vertices associated with the hypotheses Hi , i ∈M \{I } and
updating the graph accordingly. Such weights are the basis of the decision tables introduced in
[7]. In the Appendix it is shown that with Algorithm 1 the resulting weights for the intersection
hypotheses and related decision tables are independent of the sequence, when the vertices are
removed.
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2.3. Examples

We now illustrate the choice of (a,G) for several commonly used multiple test procedures.
Gatekeeping strategies are left out here and discussed separately in Sections 3.3 and 4.

Fixed sequence test: Consider first fixed sequence tests, where the test sequence of the hypotheses
is fully specified in advance. Each hypothesis is tested at level �, where non-rejection at any step
renders further testing unnecessary [2, 3]. Figure 6 illustrates the fixed sequence test with three
hypotheses, where H1 precedes H2, which in turn precedes H3. Note the initial allocation of the
overall significance level � to the individual hypotheses. If, for example, H1 is rejected, the initially
allocated significance level (� at the vertex H1) is passed on fully to H2 (as indicated by the
directed edge with associated weight 1). Accordingly, a=(�,0,0) and

G=

⎛
⎜⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎟⎠

where g12=1 (g23=1) denotes the transition of the local significance level �1 (�2) from H1 to
H2 (H2 to H3).
Fallback procedure: Wiens [4] proposed a modification of the fixed sequence test, which over-

comes the dependence on the order of the hypotheses (while sacrificing some power for the
individual tests, since they are performed at local significance levels less than �). In the notation
from Algorithm 1, a=(�1,�2,�3) and

G=

⎛
⎜⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎟⎠

An improvement was proposed by [5] using the closed test procedure. It can be shown that Figure 7
visualizes the improved procedure for m=3.

Figure 6. Graphical illustration of the fixed sequence test with three hypotheses.

Figure 7. Improvement of the fallback procedure by [5] with r =�2/(�1+�2).

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:586–604
DOI: 10.1002/sim



594 F. BRETZ ET AL.

Figure 8. The step-down test without order constraints from [13]. HEi and HSi denote the efficacy and
safety null hypotheses for treatment i=1,2,3, respectively.

Bonferroni–Holm procedure: As seen from Figure 3, a=(�1,�2,�3) and

G=
⎛
⎜⎝

0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

⎞
⎟⎠

fully specify the weighted Bonferroni–Holm procedure. Note that weights other than 0.5 could be
used as entries for G, thus generalizing the Bonferroni–Holm procedure.

Step-down tests for identifying effective and safe treatments: Bauer et al. [13] considered the
comparison of several treatments with a control for both an efficacy and a safety endpoint. They
proposed several stepwise test procedures that can all be constructed with the iterative graphs
proposed here. For example, the graph in Figure 8 corresponds to the step-down procedure without
order constraints between treatments (Section 3 in [13]). Here, the significance level is equally
split across treatments and within each treatment a fixed sequence test for the efficacy and safety
is performed. If for one treatment both hypotheses can be rejected, the level allocated to that
treatment is equally distributed among the other treatments.

3. EXTENSIONS

In this section we describe some extensions of the graphs considered so far. In Section 3.1
we describe how Algorithm 1 can be modified so that the adjusted p-values can be computed.
In Section 3.2 we describe how to calculate simultaneous confidence intervals in the current
framework. Finally, in Section 3.3 we re-visit the gatekeeping procedure described in Section 1 and
propose some extensions of the graphs to include further Bonferroni-based closed test procedures.

3.1. Adjusted p-values

Adjusted p-values are often used to describe the outcome of a multiple test procedure, since after
their calculation the test can be performed at any significance level �. Following [14], the adjusted
p-value padjj for the hypothesis Hj is the smallest significance level at which one can reject the
hypothesis using the given multiple test procedure. Adjusted p-values thus incorporate the structure
of the underlying decision rule that can be quite complex. In the following we show that a slight
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modification of Algorithm 1 allows the calculation of padj1 , . . . , padjm . To this end, define the weights
w=(w1, . . . ,wm)=(�1, . . . ,�m)/�.

Algorithm 2
0. Set I =M and pmax=0.
1. Let j =argmini∈I pi/wi .
2. Calculate padjj =max{p j/w j , pmax} and set pmax= padjj
3. Update the graph:

I → I \{ j}

w� →
{

w�+w j g j�, �∈ I

0 otherwise

g�k →
⎧⎨
⎩
g�k+g�j g jk

1−g�j g j�
, �,k∈ I, � �=k

0 otherwise

4. If |I |�1, go to step 1; otherwise stop.
5. Reject all hypotheses Hj with padjj ��.

To illustrate Algorithm 2, we revisit the numerical example from Figure 4. Here, w=( 13 ,
1
3 ,

1
3 ).

At the first iteration, j =3 and padj3 =max{0.012/0.333,0}=0.036. After updating the graph

we obtain at the second iteration j =1 with padj1 =max{0.02/0.5,0.036}=0.04. Finally, padj2 =
max{0.055,0.04}=0.055. These are exactly the adjusted p-values that would be obtained when
applying the algorithm described in [14]. Thus, we can reject H3 for any significance level ��0.036,
reject H1 for any ��0.04, and reject H2 for any ��0.055. It should be noted that the test decisions
obtained from Algorithm 2 are exactly the same as those from Algorithm 1.

3.2. Simultaneous confidence intervals

In the Appendix we prove that the proposed graphs lead to consonant closed test procedures satis-
fying a natural monotonicity condition. Since [15, 16] derived compatible simultaneous confidence
intervals for such procedures, we can apply them in a similar manner to the present framework.
Consider the one-sided null hypotheses Hi :ϑi��i , i ∈M={1, . . . ,m}, where ϑi are the parameters
of interest (e.g. treatment means or contrasts thereof) and �i are the pre-specified constants (e.g.
non-inferiority margin). Let further Li (�) denote local (i.e. marginal) lower confidence bounds at
level 1−�. Finally, let R⊆{1, . . . ,m} denote the index set of hypotheses Hi rejected by a multiple
test procedure specified through a graph G=(a,G). Following [15], the one-sided lower confidence
bounds L̄i for ϑi , i ∈M with coverage probability of at least 1−� are given by

L̄i =

⎧⎪⎨
⎪⎩

�i if i ∈ R, R �=M

Li (�̄i ) if i /∈ R

max{�i , Li (�i )} if R=M

where �̄i is the level for the hypothesis Hi in the final graph when applying Algorithm 1.
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To illustrate the calculation of the simultaneous confidence intervals, we revisit the numerical
example from Figure 4 assuming �i =0 for all i . Applying the Bonferroni–Holm procedure at
level �=0.05 leads to the rejection of H1 and H3. Thus, R={1,3}�M and L̄1= L̄3=0. As seen
from Figure 4, �̄2=� and L̄2 reduces to the marginal confidence bound at level 1−�.

3.3. Shifting significance levels between families of hypotheses

Consider a situation where families of hypotheses are given and where the rejection of hypotheses
in one family is of interest only if all the hypotheses from another family were rejected. In such
cases a multiple test procedure can be applied that allows for a reallocation of the significance
level between families of hypotheses. Such a test strategy can be implemented with graphs that
include edges with infinitesimally small weights. Along the vertices with an infinitesimally small
weight � no significance level is passed. However, if during the iterative procedure for a vertex
only infinitesimal outgoing edges remain, they become non-infinitesimal edges after normalization
(such that the sum of outgoing weights becomes one) and can pass the level to other hypotheses.

More formally, when updating the transition weights gi j in the graph according to Algorithms 1
or 2, � is treated in the calculations as a variable representing some fixed positive real number. In
contrast, for the computation of the updated levels �i (Algorithm 1) or weights wi (Algorithm 2),
we let �→0. Thus, for all real numbers x>0 we get the calculation rules x+�= x, x�=0,�0=1,
and for all non-negative integers k, l

�k

�l
=

⎧⎪⎨
⎪⎩
0 if k>l

1 if k= l

∞ if k<l

As an example consider the test of three hypotheses H1,H2, and H3, where H1,H2 are of primary
interest and H3 is of interest only if H1 and H2 can be both rejected. Consider the following test
strategy. Perform the Bonferroni–Holm procedure at level � for H1 and H2. If both H1 and H2
can be rejected, then H3 is tested at level �. Figure 9 shows the corresponding graph that differs
from the graph of the Bonferroni–Holm procedure with two hypothesis (see Figure 1) only by the
additional edge from H2 to H3 with weight �. Additionally, to achieve weights that sum to one,
the weight of the edge H2–H1 is set to 1−� (instead of 1 in the Bonferroni–Holm procedure). By
the calculation rules set above, these modifications do not effect the Bonferroni–Holm procedure
for H1 and H2. However, if both hypotheses H1 and H2 are rejected, the significance level � is
shuffled to H3. To illustrate the procedure numerically, assume that �=0.05 and the observed
p-values are p1=0.04, p2=0.01, and p3=0.03. As p2<�/2, H2 is rejected in the first step and
its level �/2 is shuffled to hypothesis H1, since by the above calculation rules (1−�)�/2=�/2

Figure 9. The Bonferroni–Holm procedure as gatekeeper and the iterated graphs with the observed p-values
p1=0.04, p2=0.01, and p3=0.03.
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and ��/2=0. Now, the vertex H2 is dropped from the graph and the edges of H1 are updated.
In particular, the edge from H1 to H3 gets the weight 0+�/(1−(1−�))=1 (see Figure 9). In the
second step, H1 is rejected (p1��) and its level is passed on to H3 that is rejected in the last step
(p3��). Note that instead of defining an �-edge from H2 to H3 we could equivalently define such
an edge from H1 to H3 or, as a third possibility, both � edges. By the calculation rules all these
graphs will lead to the same multiple test procedure.

The example can easily be extended to allow for different weights in the �-graph. Assume that
there is an additional fourth hypothesis H4 and that H3 and H4 are of interest only if both H1
and H2 were rejected. We wish to perform the Bonferroni–Holm procedure at level � for the two
hypotheses H1 and H2 of primary interest. If both H1 and H2 can be rejected, then a weighted
Bonferroni–Holm test for H3 and H4 with weights r1 and r2 is foreseen, such that r1+r2=1.
The left graph in Figure 10 visualizes the two Bonferroni–Holm procedures that are joined by
edges with weights r1� and r2�. As above, the weight of the edge between H2 and H1 is set to
1−�. If both hypotheses H1 and H2 are rejected, the significance level � is shuffled to H3 and H4
according to the weights r1 and r2: H3 receives r1� and H4 receives r2�. To illustrate the resulting
sequentially rejective procedure, set �=0.05, r1=0.8,r2=0.2 and assume the p-values p1=0.04,
p2=0.01, p3=0.03, and p4=0.04 have been observed. Since p2<�/2, H2 is rejected in the first
step and its level �/2 is shuffled to hypothesis H1. Now, the vertex H2 is dropped from the graph
and the edges of H1 are updated (middle graph in Figure 10). For example, the edge from H1 to
H3 gets the weight 0+r1�/(1−(1−�))=r1=0.8. In the second step, H1 is rejected since p1<�.
Now, H3 receives the level r1�=0.8 ·0.05=0.04 and H4 the level 0.01 (right graph in Figure 10).
Accordingly, H3 is rejected next (p3<0.04) and passes its level to H4, which is finally rejected
with p4<0.05.

More generally, assume that the hypotheses are grouped into families Fk,k=1, . . . ,K , such
that for all hypotheses Hi ,Hi ′ ∈Fk , there exists a path from Hi to Hi ′ along the edges that have
positive (non infinitesimal) weights. Additionally, assume that for all hypotheses Hi ∈Fk , Hi ′ /∈Fk
all paths from Hi to Hi ′ have at least one edge with an infinitesimal weight. The significance level
for the hypotheses in Fk is then shifted to hypotheses outside of Fk only if all hypotheses in Fk
have been rejected. Note that it makes no difference which hypotheses in Fk are chosen as the
origin of the � edges; all choices lead to the same multiple test procedure.

Adding � edges may uniformly improve a multiple test as we show below for the gatekeeping
procedure from Figure 2. As a general rule, a graph is complete (and thus cannot be improved by
adding additional edges) if the weights of outgoing edges sum to one at each vertex and if the
graph is irreducible, i.e. if every vertex is accessible from any of the other vertices. If initially a

Figure 10. The Bonferroni–Holm procedure as gatekeeper and the iterated graphs with parameters �=0.05,
r1=0.8, r2=0.2 and the observed p-values p1=0.04, p2=0.01, p3=0.03, p4=0.04.
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Figure 11. A modified fallback procedure.

Figure 12. Improvement of the gatekeeping procedure from [7].

positive significance level is assigned to each hypothesis, i.e. �i>0, i=1, . . . ,m, irreducibility is
also a necessary condition for completeness.

In the following we give two further examples of multiple test procedures with �-edges.
Modified fallback procedure: After the rejection of a hypothesis in the original fallback procedure,

the significance level is passed down to the next hypothesis in the hierarchy. This has been critically
discussed [17] since it implies that the significance level of less important hypotheses may be
increased while hypotheses that are higher in the hierarchy remain not rejected. Figure 11 (which
is a simple extension of the test procedure defined in Figure 9) defines a fallback procedure that
shifts the level to the first hypothesis in the hierarchy that has not been rejected so far.

Improved gatekeeping procedure. Infinitesimal weights can also be used to uniformly improve
the gatekeeping procedure from [7], as seen in the following example. Let �=0.05 and assume
that p1=0.02, p2=0.04, p3=0.01, and p4=0.015. According to Figure 2, first H1 is rejected
and the level �/2 is distributed equally to H3 and H4, which are both now assigned the level �/4.
Next, H3 is rejected and passes the level on to H4, which then is rejected. Here the algorithm
stops. Although H3 and H4 are both rejected, the significance level cannot be shuffled to H2
(which has not been rejected yet) since a corresponding edge is missing. Thus, the gatekeeping
procedure can be improved by adding � edges from H3 to H1 and from H4 to H2 (see Figure 12).
For the numerical example above this implies that in the improved gatekeeping procedure the only
outgoing edge from H4 after the rejection of H1 and H3 is the �-edge to H2 and is thus assigned
the weight 1. After rejecting H4 the level is passed to H2, which then can also be rejected. In this
numerical example we can therefore reject all four hypotheses with the improved procedure from
Figure 12, but only H1,H2, and H3 with the original procedure displayed in Figure 2. Note that
this improvement has been described previously in [9, 18].
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4. CASE STUDY

In this section we discuss a case study to illustrate how the methods from this article can be
used to best tailor a multiple test strategy to given study objectives. This case study refers to
the late phase development of a new drug for the indication of multiple sclerosis. The primary
objective of the study is to compare two dose levels of the new drug with a control treatment
for three hierarchically-ordered endpoints (annualized relapse rate, number of lesions in the brain,
and disability progression). We have therefore six elementary hypotheses Hi j :�i j�0, where �i j
denotes the mean difference of treatment i=1 (high dose), 2 (low dose), and control for endpoint
j =1,2,3. In the following we describe several test strategies and use the graphical tools developed
in this article to visualize them. It is not the purpose to recommend one strategy, since each
has its advantages and disadvantages. The following discussion is rather meant to demonstrate
the flexibility of Bonferroni-based closed test procedures and the need to understand the study
objectives well in order to propose a reasonable test strategy with good operational characteristics
(i.e. high probability of success for the study).

Strategy 1. A straightforward approach is to apply a fixed sequence test to the six hypotheses
being and to test each hypothesis sequentially at level �. The sequence H11→H21→H12→H22→
H13→H23 is a reasonable possibility, see also Figure 13. In practice such a strategy is often not
recommended because of the inherent risk to stop too early. If, for example, the observed p-value
for H11 is larger than �, none of the subsequent hypotheses can formally be rejected, even if their
p-values are very small.
Strategy 2. An alternative approach that avoids stopping too early if the hypotheses corresponding

to the first dose cannot be rejected is to group the six elementary hypotheses according to the dose
into the two families F1={H11,H12,H13} and F2={H21,H22,H33}. Assuming that there is the
wish to reject the secondary (tertiary) endpoint for dose i=1,2 only if the associated primary
(primary and secondary) endpoints were rejected before, the left graph in Figure 14 visualizes a
possible strategy. Within each family the endpoints are tested in a fixed sequence at bonferronized
level �/2. If for any dose level the three related null hypotheses can be rejected, the fixed sequence
for the other dose level can be conducted at level �. The right graph of Figure 14 shows a
modification of this test strategy that puts more weight on the hypotheses corresponding to the
endpoints in the primary positions of the hierarchy. After each rejection the level is split between
the two families and allocated to the first endpoint in each family that has not been rejected so
far. If all the hypotheses are rejected in a family, the total level is allocated to the other family.

Strategy 3. In some situations it may be reasonable to order the dose levels, for example, because
of safety concerns or because the higher dose level i=1 is expected to have a larger treatment
effect than the lower dose level i=2. Such assumptions then may lead to different families of
hypotheses than considered previously. For example, if one is indeed willing to assume �1 j>�2 j
for all j , it seems natural to start testing the high dose for the primary endpoint at level �. If H11
was rejected, the question is then whether one can argue that H12 is more important than H21

Figure 13. Visualization of Strategy 1.
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Figure 14. Visualization of different implementations for Strategy 2.

Figure 15. Visualization of a possible implementation for Strategy 3.

(or vice-versa), leading to a fixed sequence as discussed in Strategy 1, or whether both hypotheses
H12 and H21 are equally important. In the latter case, this would lead naturally to the set of
familiesF1={H11},F2={H12,H21},F3={H13,H22}, andF4={H23}, whereFi precedesF j
for 1�i< j�4. While there is no need for further discussion on how to test F1 and F4, different
possibilities exist for F2 and F3. E.g. one could test F3 only if at least one hypothesis from
F2 was rejected. An alternative approach is to test F3 only, if both hypotheses from F2 were
rejected, as visualized in Figure 15.
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5. DISCUSSION

In this article we propose a simple graphical tool to construct and compare weighted Bonferroni-
based closed test procedures. We believe that the resulting graphs are easier to communicate to
the clinical teams than extensive tables or matrices containing the weights for the intersection
hypotheses. Because of this, different strategies can be constructed quite easily for a given problem
and compared with each other in order to select the most suitable strategy, i.e. the one that best
addresses the study objectives. As demonstrated with the case study in Section 4, Bonferroni-based
closed test procedures are very flexible and lead to a variety of test strategies. The ultimate choice
is always a compromise between the risk of stopping too early in the test sequence and a potential
loss of power induced by splitting the significance level.

The proposed graphs are in fact iterative in the sense that together with a simple updating
algorithm each of them fully describes a sequentially rejective test procedure. In addition to this,
the results from [9] ensure that the resulting test procedures are always consonant. Thus, shortcut
procedures of length m are obtained and any multiple test procedure constructed with the methods
from this article can in essence be performed with the same amount of effort as the common
Bonferroni–Holm procedure. In addition, adjusted p-values and simultaneous confidence intervals
are readily available.

The graphs that are iteratively generated by Algorithm 1 can be interpreted as a sequence of
finite Markov chains where the hypotheses (i.e. the vertices of the graph) correspond to states
and the vector w=a/� to the initial probability distribution on these states. For each Markov
chain (graph) at a certain step of the algorithm all hypotheses not rejected so far are defined as
absorbing states (that keep the level allocated to them) and the rejected hypotheses as transient
states with transition probabilities defined by G. The absorption probabilities multiplied by � are
then the local significance levels associated with the not yet rejected hypotheses. It can be shown
that Algorithm 1 is a variant of the state reduction algorithm for the computation of absorption
probabilities of finite Markov chains [19].

The proposed graphs, together with an updating rule as Algorithm 1, define the weights for the
2m−1 intersection hypotheses. Note that these intersection hypotheses do not need to be tested
with weighted Bonferroni tests. In principle, any weighted �-level tests could be used, for example,
resampling based max t , weighted Simes, Dunnett, or Sidak tests. However, for tests other than
the Bonferroni test, the consonance property may be lost and instead of the shortcut procedure
resulting from Algorithm 1 or Algorithm 2, the full closure may be required, testing through all
2m−1 intersection hypotheses.

APPENDIX A

We verify the main result from Section 2.2 by showing that a graph G defines a closed test
procedure with weighted Bonferroni tests for the intersection hypotheses and that Algorithm 1
is a shortcut for this closed test procedure. We thereby utilize results from [9], which give a
necessary and sufficient monotonicity condition for the local significance levels of the weighted
Bonferroni tests such that the resulting closed test is consonant and admits a shortcut. This shortcut
is then shown to be equivalent to Algorithm 1. Accordingly, we prove the main result in three
steps.
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(i) Monotonicity conditions leading to consonant closed test and shortcut procedures: Here,
we state the necessary and sufficient monotonicity conditions for the local significance
levels of the weighted Bonferroni tests applied to all intersection hypotheses such that the
resulting closed test procedure is consonant. Following [9], we then describe the resulting
shortcut procedure.

(ii) A graph G with an appropriate updating rule generates a consonant closed test: We show
that any given initial graph G applied to subsets of vertices (hypotheses) together with
the updating rules from Algorithm 1 generates a unique set of local significance levels
for such subsets. These local significance levels define weighted Bonferroni tests for the
corresponding intersection hypotheses. It is shown that the monotonicity condition still
holds, thus resulting in a consonant closed test procedure.

(iii) The shortcut is applied to the closed test generated by graph G and the updating rule is
equivalent to Algorithm 1: Here we show that the shortcut procedure from (i) is applied to
the local significance levels generated by G and the updating rule leads to Algorithm 1 for
any given set of local p-values and hence the resulting test procedure protects the FWER.

(i)Monotonicity conditions leading to consonant closed test and shortcut procedures: Following
[9], let �i (I ), i ∈ I ⊆M={1, . . . ,m} denote the local significance levels for an intersection hypoth-
esis such that

∑
i∈I

�i (I )�� (A1)

and the monotonicity condition

�i (I )��i (J ) for all i, I, J with i ∈ J and J ⊂ I ⊆M (A2)

holds. Given the unadjusted p-values pi , i=1, . . . ,m, the corresponding closed test procedure
based on local Bonferroni tests for the intersection hypotheses HI =⋂

i∈I Hi for all I ⊆M is
consonant and equivalent to the following shortcut procedure [9, Theorem 1]:
0. Set I =M .
1. If there is a j ∈ I such that p j�� j (I ), then reject Hj ; otherwise stop.
2. Set I → I \{ j}.
3. If |I |�1, go to step 1; otherwise stop.

(ii) The graph G generates a consonant closed test: Let G(M) be the initial weighted graph with
transition matrix G(M) and initial significance levels a(M) on all m=|M | vertices representing
the elementary hypotheses H1, . . . ,Hm . We generate from G(M) and a(M) a unique set of initial
significance levels a(J ) for all nonempty subsets J ⊆M satisfying (A1) and (A2). This set is
generated by the following inductive procedure: We start defining �l(M)=� j and glk(M)=glk for
all l,k∈M . Given an index set I ⊆M and assuming the significance levels �l(I ) and the transition
matrix glk(I ) for l,k∈ I , we define significance levels and a transition matrix for all J = I \{ j}
with j ∈ I by

��(J )=
{

��(I )+� j (I )g j�(I ), �∈ J

0 otherwise
(A3)
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and for |I |�3

g�k(J )=

⎧⎪⎨
⎪⎩
g�k(I )+g�j (I )g jk(I )

1−g�j (I )g j�(I )
, �,k∈ I, � �=k

0 otherwise

(A4)

More generally, if J =M \{ j1, . . . , jk} for the k distinct indices j1, . . . , jk then we inductively apply
(A3) and (A4) to the sequence Iu =M \{ j1, . . . , ju}, u=1, . . . ,k, starting with I1=M \{i1}. The
final transition matrix G(Ik) and weights a(Ik) are then assigned to J .

To end up with a unique set of transition matrices and weights, we need to show that they
are independent from the ordering in which we have removed the indices { j1, . . . , ju}. Certainly,
this is only a question if more than one element is removed, i.e. for index sets of size m−1
uniqueness is out of question. Because every ordering can be obtained by successively interchanging
neighboring indices in the sequence j1, . . . , ju , independence from the ordering for |J |<m−1
would follow from a[(I \{i})\{ j}]=a[(I \{ j})\{i}] for all I ⊂M with |I |�3 and i, j ∈ I , and
G[(I \{i})\{ j}]=G[(I \{ j})\{i}] for all |I |�4 with i, j ∈ I . Applying (A3) and (A4) we compute
that for all I ⊂M with |I |�3 and i, j ∈ I, i �= j

��[(I \{ j})\{i}]=

⎧⎪⎨
⎪⎩

��+ (� j g j�+�i gi�)+(�i gi j g j�+� j g ji gi�)

1−gi j g ji
, �∈ I \{i, j}

0 otherwise

(A5)

whereby we have put g jl =g jl(I ) for simplicity. Since this expression is symmetric in i and j we
have a({I \{ j}}\{i})=a({I \{i}}\{ j}). Inverting (A3) shows that for all I ⊂M with |I |�4 and
i, j,k, l∈ I , we have gkl [(I \{i})\{ j}]=[�l(I \{i, j,k})−�l(I \{i, j})]/�k(I \{i, j}), which is also
symmetric in i, j . This shows that a(J ) is uniquely defined for all J ⊆M .

Monotonicity: By construction, property (A1) holds for the initial graph G(M) as well as the
regularity conditions for the transition matrix G(M) stated in Section 2.2, i.e. 0�gi j (M)�1,
gii (M)=0, and

∑m
j=1 gi j (M)�1 for all i=1, . . . ,m. Assume that these conditions hold for any

I ⊂M with |I |�n,n<m. Let J = I \{ j}, j ∈ I . Applying (A3) to �(I ) and using the regularity
condition for G(I ) then guarantees conditions (A1) and (A2) to hold for all J ⊂M with |J |=
|I |−1. Similarly, the regularity condition of G(J ), for the same J , are easily verified by applying
equation (A4) to G(I ). By induction then the monotonicity and regularity conditions hold for
all I ⊂M .

(iii) The shortcut applied to the closed test generated by graph G and the updating rule is
equivalent to Algorithm 1: Given an initial graph G(M) and univariate p-values pi , i ∈M , one
can now apply the shortcut procedure described in (i). Given the initial weight vector a(M),
one performs step 1 of the algorithm, i.e. checks if a hypothesis Hj can be rejected at its local
significance level � j (M). If this is the case, one has to check whether any further rejection is
possible with the significance levels a(M \{ j}). According to (ii), these levels can be computed via
equation (A3). If again a rejection of one of the remaining hypotheses is possible, one computes the
transition matrix G(M \{ j}) using (A4) to obtain the weight vector a for the remaining hypotheses,
and so on. This, however, describes exactly Algorithm 1. Note that if at any step more than one
hypothesis could be rejected, it does not matter which one to select. The rule given in Algorithm
1 is just one of the possible selection rules, see also Remark (iii) in Section 2.2.
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