A SURVEY ON MEDICAL DIAGNOSIS AND FUZZY SUBSETS

KLAUS-PETER ADLASSNIG

Department of Medical Computer Sciences
(Director: Prof. Dr. G. Grabner)
University of Vienna
A-1090 Vienna, Garnisongasse 13, Austria

Fuzzy set theory with its capability of defining inexact medical entities as fuzzy subsets, with its linguistic approach providing an excellent approximation to medical texts as well as its power of approximate reasoning seems to be perfectly appropriate for designing and developing computer-assisted diagnostic, prognostic and treatment recommendation systems. The detailed survey of fuzzy approaches to medical decision making shows the wide and deep interest of researchers all over the world to find a solid fuzzy theoretical basis for the representation of medical knowledge as well as for the diagnostic process and to use it in practical applications.

Keywords: fuzzy set theory, medical diagnosis, survey.

1. INTRODUCTION

Since the very beginning of developing computer-assisted diagnostic methods and medical decision aids in the years 1958 /1/ and 1959 /2/, a great number of medical diagnostic models applied in different medical fields with varying results (bibliographies in computer-assisted diagnosis can be found in /3-5/) have been proposed and a certain number of them has been tested.

The first logical approach to medical decision making (as opposed to numerical models 1) based on Bayes' Theorem, likelihood ratio, linear and nonlinear discriminant analysis, clustering methods, factor and principal component analysis, decision analysis, adaptive threshold logic unit, perceptron algorithm, etc.) has been suggested by LEDLEY and LUSTED in 1959 /2/ (see also LEDLEY /6/).

Since that year, several systems using Boolean logic to express functional and etiological relationships between symptoms and diseases have been proposed /7/ and established /8-16/. In 1969 GANGL, et al. /11/ proved the usefulness of such approaches. The described batch system considered 82 liver diseases and 323 symptoms (history, physical examination, laboratory tests, X-ray findings, special tests). In each of the 20 test cases the clinically confirmed diagnosis was put out as diagnostic hypothesis (among 3-6 others). These results were very encouraging.

Later then, as a logical consequence, the symptoms and diagnoses were not only considered to be present or absent as in two-valued systems but the truth-values "present", "absent", or "not
examined" were assigned to symptoms and "present" (confirmed), "absent" (excluded), and "possible" (hypothesis) to diagnoses. Thus tri-valued logic was introduced as a means for the representation of medical knowledge /17-20/.

In the report about the computer-assisted medical diagnostic consultation system CADIAG-1 /19/, the tri-valued logical system of KLEENE /21/ seems to be adequate to formalize medical judgement in an abstract and computable way, understandable by and acceptable to the medical community. This system has now been established for 308 diseases from internal medicine (rheumatology, hepatology, coagulation defects and pancreatic diseases) and takes about 2,500 symptoms into account.

The possibility of expressing medical knowledge in terms of predicate logic was also mentioned in /19/.

In the last ten years, some very powerful computer-based medical decision and consultation systems have been developed by researchers working in the field of artificial intelligence. SHORTLIFFE, et al. give in /22/, among others, an excellent introduction to these symbolic reasoning approaches.

The MYCIN system (see /22,23/) has been designed to assist physicians in the detection of the cause of infectious diseases and to recommend therapies. The medical knowledge about the diseases considered is represented in IF-THEN production rules associated with certainty factors.

CASNET /22,24,25/ offers associational links between Boolean combinations of tests and single pathophysiological causal states that carry confidence factors. Furthermore, state network rules associated with a given likelihood for the effect S_2 to follow from the occurrence of the cause S_1 are used in CASNET. Finally, classification rules that are Boolean combinations of confirmed or denied states implying diagnostic statements are incorporated in order to represent medical knowledge. CASNET was created for glaucoma consultation.

The EXPERT system /26-28/ permits the definition of rules with confidence levels and hierarchical concepts to convert medical knowledge into a computable form. It has been applied in rheumatology, endocrinology and ophtalmology /29/.

A further system applicable in the field of internal medicine is called INTERNIST /22,30,31/. Symptom-disease (frequency of occurrence) as well as disease-symptom relationships (evoking strength) are stored on the basis of an ad hoc scoring method.

MYCIN, CASNET and EXPERT are logical in the sense that relationships between all kinds of observations on the patient form the basis for IF-THEN inferences (modus ponens in classical logic, implication in terms of logical operations) but the inferences do not necessarily have a definite character. They are associated with certainty factors, confidence factors, likelihoods, or confidence levels that express the fuzziness, the non-definiteness of the relationships. The "evoking strength" of the INTERNIST system also belongs into this category.

Other authors who use IF-THEN statements
but without any elements of uncertainty are BUTTON /32/ and GIESZL /33/.

Fuzzy set theory with its capability of defining inexact medical entities as fuzzy subsets, with its linguistic approach providing an excellent approximation to medical texts as well as its power of approximate reasoning, seems to be perfectly appropriate for designing and developing computer-assisted diagnostic, prognostic and treatment recommendation systems. A detailed review of fuzzy approaches to medical diagnosis published until now follows in the next paragraphs.

In order to conclude this section it should be mentioned that disease descriptions using the theory of formal languages /34/ or automata /35,36/ as well as methods using decision table techniques /37/ also belong into the category of logical diagnostic systems.

2. REVIEW OF PUBLISHED METHODS

2.1. Symptoms, signs, and test results and fuzzy subsets

ALBIN /38/, PEREZ-OJEDA /39/, MOON, et al. /40/, and ESOGUE and ELDER /41/ propose the application of fuzzy subsets to determine normal or pathological ranges as well as the boundaries for low, normal, high or normal, slightly decreased, decreased, etc. for clinical or diagnostic tests. The membership functions of these fuzzy subsets define the affiliation strength of a numerical test result in the fuzzy subsets under consideration. In this way, ALBIN /38/ presents appropriate membership functions for normal, long thrombin time, etc. In /41/, for example, a suitable linear function for the fuzzy subset \(A_1 \) of abnormal cholesterol levels, expressed in milligrams per 100 milliliters of serum, is given by

\[
\mu_{A_1}(r_t) = \begin{cases}
0 & \text{for } r_t \leq 260 \\
\frac{r_t - 26}{340} & \text{for } 260 < r_t \leq 600 \\
1 & \text{for } r_t > 600.
\end{cases}
\] (1)

where \(r_t \) is any possible numerical result of the cholesterol test and \(A_1 \) expresses the set including all possible test results. Thus, the degree of abnormality of the cholesterol test result is reflected by the membership function \(\mu_{A_1}(r_t) \in [0,1] \). Performing the cholesterol test on a patient and getting a result of \(r_t = 260 \text{ mg/100 ml} \) means that the patient shows a normal cholesterol level. When a test result \(r_t = 600 \text{ mg/100 ml} \) is obtained, the patient under consideration reveals an abnormal cholesterol level. Furthermore, a test result between 260 and 430 \(\text{mg/100 ml} \) \((r_t = 430 \text{ mg/100 ml}) \) is the value where \(\mu_{A_1}(r_t) \) becomes 0.5 seems to be "more normal" than a test result between 430 and 600 \(\text{mg/100 ml} \).

ESOGUE and ELDER /41/ propose the use of fuzzy subsets to characterize the severity levels of nonbinary symptoms such as headache or cyanosis. The membership functions would reflect the painfulness or blueness of these symptoms. But compared to the laboratory test descriptions using fuzzy subsets, the definition of the reference sets for symptom fuzzy sub-
sets is less natural and clear. A subjective (patient or physician) assignment of the observed symptom value (patient's pain, or blue discoloration) in the fuzzy subset is needed.

Perez-Ojeda /39/ and Moon, et al. /40/ use linguistic modifiers (also termed hedges /42-44/) to calculate the degree of membership of a test result in the fuzzy subset S_2 out of the degree of membership in S_1. Linguistic modifiers are for example very, more or less, not, etc. By using them, Moon, et al. /40/ compute the degree of membership of the result x of the urine sodium concentration test in the fuzzy subset very high urine sodium concentration $\mu_{S_2}(x)$ out of high urine sodium concentration $\mu_{S_1}(x)$ by performing

$$\mu_{S_2}(x)=\mu_{S_1}(x)^2.$$

(2)

In /41/, EsoGBue and Elder introduce fuzzy subsets to determine diseases or disorders in the patient's past history which might be missed or remain undiagnosed. The presence or absence of such diseases might then be decided on from past undiagnosed symptoms, but the physician only considers the "prominent" symptoms of past diseases. The fuzzy subset S_j, containing the prominent symptoms of past disease j is defined as

$$S_j=\{\{x_{ij}\}/x_{ij}\geq \alpha \}$$

(3)

where $\mu_{S_j}(x_{ij}) \in [0,1]$ and $0 \leq \alpha \leq 1$.

The set of possible symptoms for past undiagnosed disease j is I_j, where $1 \leq j \leq p$ and p is the number of undiagnosed diseases in the patient's past history. Wherever the physician designates the membership function $\mu_{S_j}(x_{ij})$ of symptom X_{ij} for disease j over a specified level α, the symptom of X_j becomes a "prominent" symptom.

2.2. Diseases/diagnoses and fuzzy subsets

SMETS, et al. /45/ mention the fuzziness of diagnostic terms like arteriosclerosis or angina pectoris. Mostly, diseases are not clearly defined entities. It is often impossible to determine precisely the symptoms related to a disease. Diagnoses are defined to be fuzzy subsets with symptoms as elements. The symptoms are combined with a degree of membership which characterizes the intensity of belonging to the fuzzy subset that represents the disease under consideration.

Albin /38/ considers patients suffering from a certain disease as points in the n-dimensional symptom space S, where n is the number of symptoms taken into account. Now, every given patient with disease D_j exhibiting symptoms $(S_1, ..., S_n)$ in S is combined with a degree of membership $\mu_{D_j}([S_1, ..., S_n]) \in [0,1]$ that shows the affiliation of the patient in D_j. Because $\mu_{D_j}([S_1, ..., S_n])$ is not necessarily 1 for $i=j$ and 0 for $i \neq j$, patients suffering from the same disease do not form clusters with sharp boundaries.

2.3. Fuzzy relations between symptoms and diseases

In /39/, Perez-Ojeda proposes a network presentation of medical knowledge (associative memory, semantic network) in which the facts, symptoms, diseases, etc., are linked by relations. Six types of nodes are considered: disease-complex nodes, disease nodes, symptom-complex nodes, symptom nodes, statement nodes (relations) and test nodes. Perez-Ojeda
translates medical statements like
"Acute pyelonephritis usually presents
bladder irritation and infection," and
"Acute pyelonephritis presents occasion-1
ally fever, or chills, and malaise."

into

OR (usually (acute pyelonephritis, AND
(bladder irritation, infection)),
occasionally (acute pyelonephritis, AND
(OR (fever, chills), malaise)).

The relations used in this information
structure (usually, occasionally, always,
amost always, etc.) are frequency or
probabilistic modifiers. They are re-

described as fuzzy subsets, e.g.
always: 0.1/0.7+0.3/0.8+0.6/0.9+1.0/1.0,
of the universe of discourse
U= 0+0.1+0.2+0.3+0.4+0.5+0.6+0.7+0.8+0.9+1.0.

A network in the fashion described above
has been built which consists of 23
disease-complex and disease nodes, 101
symptom nodes and 227 statements.

SANCHEZ /46,47/ starts by considering
the introduction of a fuzzy relation
R:SxD between symptoms S and diseases D.
SANCHEZ calls this "medical knowledge"
expressing associations between symptoms
and diseases. Let, further, A be a fuzzy
subset of S related to the patient, then
the computation of the max-min 2)
composition B=AoR 3) is assumed to
describe the state of the patient in
terms of diagnoses as a fuzzy subset B
of D, characterized by its membership

function

\[u_B(d) = \max_{s \in S} \min(u_A(s), u_R(s,d)), \quad d \in D. \quad (4) \]

If we consider several patients belonging
to a set P and define a relation Q:PxS,
equation (4) becomes

\[u_T(p,d) = \max_{s \in S} \min(u_Q(p,s), u_R(s,d)), \quad (5) \]

where p:P and T is a fuzzy relation on
PxD. The composition is written as

\[T=QoR. \quad (6) \]

In fuzzy logic, (6) is called a compo-
sitional rule of inference (ZADEH /44/,
BELL MANN and ZADEH /42/ or a fuzzy
meta-implication (KAUF MANN /48/).

Moreover, the composition B=AoR of a
fuzzy subset A with a fuzzy relation R
corresponds to the concept of the fuzzy
conditional statement: IF A THEN B BY R
(see /42,44,52,53/).

Applied in the field of medical diag-
nosis, the conditional statement allows
to infer medical diagnoses B out of
patient's symptoms A by means of the
"medical knowledge" 4) which is pre-
sented in a relation matrix R estab-
lished by medical specialists.

If the relationships between symptoms
and diseases are considered to be
either 0 (no relationships) or 1 (strong
relationship), e.g. \[u_R(s,d)=0.1 \], and
patient's symptoms can be evaluated as
0 (absent) or 1 (present), e.g.
\[u_A(s)=0.1 \], then the max-min com-
position (4) or (5), respectively, is
reduced to a Boolean sum-product com-
position (see also /46-48/).

JOLLY, et al. /54/ report an application
of the max-min composition in the field
of cardopathies. Cardiologists have
determined a fuzzy relation R in order
to reflect the degrees of association
between five cardiological symptoms and
the diagnoses normal \(^5\), left ventricular hypertrophy and valvular cardiopathy. Five symptoms have been partitioned into classes (7 binary and 16 quantitative symptoms). The results obtained by the diagnostic procedure carried out for 21 patients with disparate cardiopathies were used "to confirm the classical concepts about cardiac function."

Another problem treated by SANCHEZ is related to equation (6). Knowing R and Q in (6), it is easy to find T. However, it is often as interesting to find R from given T and Q. In medicine, the problem frequently arises to determine degrees of association between symptoms and diseases from real patient data in Q and known diagnoses in T that have been established by medical specialists.

SANCHEZ presents in /46, 47/ a solution of the problem by obtaining the greatest R for T=QoR (see also DUBOIS and PRADE /43/). But because of getting the greatest solution for R from the solution set, which also can be void, R may contain degrees of association between symptoms and diseases that are stronger than in reality. Thus it depends on the control structure of the computer-based diagnostic system that uses the computed R in which way results are interpreted: "diagnostic hypotheses or confirmed diagnoses".

The problem to find Q from given T and R can be considered in analogy to the problem mentioned above. This task presents itself when studying different fuzzy subsets of S, i.e. patient's symptom evaluations contained in Q that keep the composition T=QoR without changing T and R. The corresponding medical question would be: "How far can patients' data vary until other diagnoses have to be made?".

Obtaining the greatest Q of possible Q's is demonstrated by SANCHEZ in /46, 47/. In /46, 47, 55/ the converse problems of (6) treated in the last two sections are also investigated by SANCHEZ in terms of Brouwerian logic.

An application of a converse problem of (6) to the differential diagnosis of icterus is given by SOULA, et al. /56/. In this example four diseases and ten symptoms are taken into account.

Furthermore, in /57/, SANCHEZ has investigated the applicability of inverses of fuzzy relations in medical diagnosis.

SANCHEZ and SAMBUC /53/ and SAMBUC, et al. /58/ propose an interesting application of \(t \)-fuzzy sets \(^6\) to the medical diagnostic problem. \(t \)-fuzzy sets take their values in the set of intervals of the form \([a_1, a_2]\) that are included in the real interval \([0, 1]\). To illustrate how symptoms are represented in this way, we will quote an example from /58/ for the sign "pain on palpation" in patient p

\[
\begin{align*}
\mu(p)[(0, 0)] & : \text{absence of pain on palpation} \\
\mu(p)[(0.8, 0.8)] & : \text{marked pain} \\
\mu(p)[(0.1)] & : \text{totally indeterminate value} \\
\mu(p)[(0.2, 0.6)] & : \text{hesitation between mild and relatively marked pain.}
\end{align*}
\]

After defining suitable connectives for \(t \)-fuzzy variables, \(t \)-fuzzy functions of the form hypothyroidism = (tachycardia OR weight loss) AND (thrombophilia OR increased thirst) AND (in-
creased serum T4 values OR increased serum T3 values) are evaluated. The following possible results are noted in /58/: hyperthyroidism=0.1: Impossible to determine from the available signs whether or not the patient is hyperthyroid.

hyperthyroidism=0.7,0.8: The patient suffers from frank hyperthyroidism.

hyperthyroidism=0.35,0.45: The patient presents a tableau of borderline hyperthyroidism.

AOLASSNIG proposes in /59/ an approach to computer-assisted medical diagnosis using fuzzy subsets that is based on two different relationships between symptoms s_j and diseases d_j:

1) s_jd_j-occurrence relationships and
2) s_jd_j-confirmability relationships.

Occurrence and confirmability are considered to be linguistic variables with always, almost always, very very often, very often, rather often, often, more or less often, unknown, more or less seldom, seldom, rather seldom, very seldom, very very seldom, almost never, never as elements (see BELLMAN and ZADEH /42/). Single s_jd_j-indications can be deduced from the s_jd_j-occurrence and s_jd_j-confirmability relationships. Examples for fuzzy subsets used to determine single s_jd_j-indications are strong and weak. Finally, one obtains total indications of the patient's symptom pattern to disease d_j by consolidating the single s_jd_j-indications.

TUSCH /60,61/ uses this model /59/ in a slightly modified form for the cranial computer tomography. The application considers five tumor diagnoses: malignomata, semimalignomata, metas-
tases, malformation tumors and benig-

nomata. 25 symptoms gathered by seven different examinations describe every case: number of foci, structure of foci (native), edemata, localization of edemata, form and position of ventricles, sulci and cisterns. The symptoms are dichotomous, with "symptom present" and "symptom absent/not inv-

vestigated" as the two distinct values.

TUSCH examines different algorithms in order to calculate total indications of the patient's symptom pattern to diseases d_j. The efficiency of the procedures lies between 55 and 76% compared to physicians' diagnoses. 802 tumor cases were used to perform this calculation. The s_jd_j-occurrence and s_jd_j-confirmability relationships have been documented linguistically by a neuroradiologist.

2.4. Symptom combinations and fuzzy subsets

ALBIN /38/ proposes a fuzzy linguistic approach to medical diagnosis. In /38/, it is said that physicians normally try to fit patients to certain prototypes of diseases. As a first approxi-
mation to such an approach, disease prototypes can be defined as shown in Table 1.

The definition of fuzzy membership functions for long s_j, decreased s_j, normal s_j, etc., then allows the calcu-
lation of degrees of membership in the fuzzy subset long s_j, decreased s_j, normal s_j, etc. given symptom values measured on the patient. Fuzzy disease membership values of patients can now be computed by using the MAX definition.
Table 1: Disease prototype definitions for two hemorrhagic disorders (from /38/, p. 128).

<table>
<thead>
<tr>
<th>Disorder</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IVW Bleeding Time</td>
<td>Platelet Count</td>
<td>QUICK Time</td>
<td>Partial Thromboplastin Time</td>
<td>Thrombin Time</td>
</tr>
<tr>
<td>D₁ Thrombocytopenia</td>
<td>Long</td>
<td>Decreased</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>D₂ Von Willebrand's Disease</td>
<td>Long</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal or Long</td>
<td>Normal</td>
</tr>
</tbody>
</table>

For fuzzy set union and MIN definition for fuzzy set intersection, for example:

\[\mu_{D₁}(p) = \mu_{\text{long}}(S₁) (12 \text{ min.}) \]
\[\wedge \mu_{\text{decreased}}(S₂) (60,000/\mu m³) \]
\[\wedge \mu_{\text{normal}}(S₃) (12 \text{ sec.}) \]
\[\wedge \mu_{\text{normal}}(S₄) (37 \text{ sec.}) \]
\[\wedge \mu_{\text{normal}}(S₅) (18 \text{ sec.}) \]
\[= 0.95 \]

Patient p, in our example, fits the prototype definition of D₁ almost exactly and if additionally computed fuzzy disease membership values \(\mu_{D₁}(p) \), where \(i \neq 1 \), are much smaller than \(\mu_{D₁}(p) \), diagnosis D₁ = thrombocytopenia is presumably the correct diagnosis for patient p.

In /62/, SANCHEZ, et al. propose a similar linguistic approach to the classification of dyslipoproteinemias. But in the diagnostic procedure described, predetermined bandwidths of the symptoms depending on the measuring accuracy of the laboratory performing the tests are additionally taken into account. The application involves five lipoprotein tests determined by electrophoretic methods. The degrees of membership in three types of dyslipoproteinemias were calculated for five test cases.

MOON, et al. /40/ present symptom combinations as AND and OR functions. The calculation of the symptom combinations is performed using the fuzzy intersection for AND and the algebraic sum for OR. A different way of presenting the OR function is mentioned: MOON, et al. use the convex combination

\[\mu_{D}(S₁, ..., S_k) = \frac{\sum_{i=1}^{k} \mu_i \cdot S_i}{\sum_{i=1}^{k} \mu_i} \] \(\text{for } k \geq 1 \)

where \(\mu_i \) is the ceiling function of \(\mu_i \) and the weights \(\mu_i \) are set equal to the posterior probabilities \(\mu(S_i) \) calculated for the single symptom \(S_i \).

CERUTTI and PIERI /63/ also use linguistic variables as an alternative to numerical variables in order to characterize complex relationships between symptoms and diseases. Primary linguistic terms (small, medium, large)
that express intervals on the numerical symptom scale compounded with linguistic hedges (very, slightly, more or less) are connected by AND and OR to compose fuzzy logical combinations. By evaluating the fuzzy logical combination, a membership function is obtained that calculates non-fuzzy values (for details see /63/).

2.5. Medical diagnosis using procedural fuzzy concepts

In /64/, HECHSLER proposes a procedural knowledge base system using fuzzy concepts. Instead of using fuzzy membership degrees, classes of functions \(f^p_i \) are established whose task is to define implicitly fuzzy sets. A class is related to a concept and it contains one or more functions \(f^p_i \) where \(p \) stands for the property to be checked and \(i \) relates to some context, e.g. to the observer \(i \). For example:

\[
f^{-age}_1(\text{teenage}) = (\text{age 12}, \text{age 18})
\]

\[
f^{-age}_2(\text{young}) = (\text{age 17}, \text{age 30})
\]

Subsequently, two kinds of order-decisions that determine whether or not a given object has the property in question are presented:

1) Middle order: The closer the value of the property of a given object is to the middle of the interval defined by \(f^p_i \) the better it fits the property to be checked. For example: Age 18 fits "teenage" better than "young".

2) LB order: The first member of the interval defined in \(f^p_i \) is the best.

Then the medical knowledge is embedded in procedures and a possible program checking for ulcers may look like 7):

\[
\text{(LAMBDA)(-0 ULCERS)}
\]

\[
\text{(PROGRAM)}
\]

\[
\text{(EXISTS Patient \ pain-location slightly}
\]

\[
\text{Below the top of}
\]

\[
\text{xiphoid process \(f^\lambda_1 \))}
\]

\[
\text{(EXISTS Patient \ time of pain breakfast \(f^\lambda_2 \))).}
\]

2.6. Fuzzy cluster analysis in medical diagnosis

In /38/, ALBIN has developed a fuzzy clustering approach using an elliptic metric to define distance in the symptom space \(S_1 \times S_2 \times \ldots \times S_n = S \times R^N \). The proposed fuzzy clustering method is compared with a Bayesian approach on the basis of some test patients.

FORDON /65/, and FORDON and BEZDEK /66/ present a very interesting application of fuzzy clustering techniques to the diagnosis of hypertensive patients. Different distance measurements are used. In one example, a fuzzy k-means algorithm diagnosed 218 essential and renovascular hypertensive cases described by four continuous parameters. The overall efficiency of the algorithm was 80.7%.

In /67/, BEZDEK applied the fuzzy ISODATA clustering algorithm to feature selection of medical data. In the numeric example, 11 binary symptoms of 107 stomach disease patients who had either hiatal hernia or gallstones were considered.

A further paper proposing the use of fuzzy clustering methods in medical diagnosis is the one by ESOGHUE and ELDEN /68/ . That paper gives an instructive example of applying a criterion function that is a modified form of the minimum MINKOWSKI metric to
rheumatic valvular heart diseases.

2.7. Fuzzy decision analysis in medical diagnosis

Imprecision in decision analysis is modeled using fuzzy set theory in NOMURA, et al. /69/ and MISHIMA, et al. /70/. These reports propose an interesting model that represents probability or utility by a membership function. The model selects an optimal treatment by comparing among degrees of truth of some propositions on expected utilities. This method is applied to managing patients with pancreatic diseases centered around primary cancer. The decision process starts from a point at which a patient is very likely to be suffering from any one of four pancreatic diseases taken into account. In clinical practice the procedure helps to decide whether or not a radical operative invasion against the supposed disease should be performed.

2.8. Bayesian approach and fuzzy subsets

In /38/, ALBINI argued that it is entirely reasonable to assign

$$u_D(S_1, ..., S_n) = P(D_i/S_1, ..., S_n) \quad (8)$$

under the condition that good Bayesian values can be obtained for the probability indices $P(D_i/S_1, ..., S_n)$.

"Calling $P(D_i/S_1, ..., S_n)$ the value of the membership function u_D at $(S_1, ..., S_n)$ in \mathbb{R}^n is much more reasonable than calling it a probability, since the manner of estimating $P(D_i/S_1, ..., S_n)$ is very inexact. Physicians' estimates based on their own medical knowledge have also been used in computing $P(D_i/S_1, ..., S_n)$ from $P(S_1, ..., S_n/D_i)$ and $P(D_i)$, so these estimates should be used with equal validity for $u_D(S_1, ..., S_n)$.

quoted from /38/, p. 84

2.9. Miscellaneous

CHENG and McINNIS describe in /71/ an algorithm for multiple attribute (symptoms), multiple alternative (diagnoses) decision problems (see also KICKERT /72/). The relative importance of a symptom j denoted by w_j, and the rating r_{ij} that indicates the importance of the symptom j with respect to disease i have been established for 12 blood chemistry tests considering 78 diseases. On this basis the computer program calculates possible diseases which are ranked and arranged in descending order.

In FOX /73/, some critical remarks concerning WECHSLER's paper /64/ are put forward. FOX emphasizes that clinical and professional acceptability of computer-based medical consultation systems is of primary importance. Technology should be planned with this in mind.

OHSATO, et al. /74/ established a fuzzy relation in a preoperative nursing care system. The relation between preoperative patient's state and postoperative state is determined by using patient's attributes before and after the operation estimated by a nurse, e.g. degree of seriousness of preoperative and postoperative patient's states.

3. FINAL REMARKS

The detailed survey of fuzzy approaches to medical decision making shows the wide
and deep interest of researchers all over the world to find a solid fuzzy theoretical basis for the representation of medical knowledge as well as for the diagnostic process and to use it in practical applications.

The survey was made with the intention of studying fuzzy approaches in medicine in order to use the knowledge for developing the general fuzzy computer-assisted diagnostic system CADIAG-2. CADIAG-2 is described in a companion paper in the same edition /75/. A first theoretical approach to CADIAG-2 was made in /76/.

FOOTNOTES

1) Such categorization is a little bit arbitrary. It shall only emphasize the difference between methods mainly based on numerical calculations in order to find out diseases shown by the patient and methods using logical inference for the most part to obtain patient's diagnoses.

2) Instead of the max-min composition the more general term sup-min composition is often used (see for example DUBOIS and PRADE /43/).

3) SANCHEZ /46,47/ and KAUFMANN /48-51/ write B=RwA, which is equivalent to the notation used above.

4) At this juncture it becomes necessary to mention that the "medical knowledge" matrix R reflects only a very small part of the entire (diagnostic) medical knowledge.

By establishing the matrix R a physician would ask:

"What does the degree of association between a symptom Sj and a disease Dj really mean? Is it the frequency of occurrence of Sj at disease Dj? Is it a certainty factor of "con" firming by"? Is it an evoking strength of Sj for Dj or what else?"

Furthermore a symptom, sign, test result, or finding often gains in importance with respect to a certain disease if it occurs with other symptoms or signs. For example, the symptom sacroileitis may occur in several diseases, as ankylosing spondylitis, juvenile arthritis, psoriatic arthropathy, Reiter's syndrome, Crohn's disease, and others. In combination with other nonspecific symptoms, e.g. concomitant mouth ulcer and conjunctivitis the diagnosis "Reiter's syndrome" can be established.

Next, the "degree of association" expressed as real number on [0,1] does not remain constant with respect to time, place and individual. It changes with sex, age, season. For instance, in spring and autumn influenza is more probable as well as in times of a flu epidemic.

Finally, concepts used in medicine, such as hierarchy of symptoms and diseases, co-occurrence of diseases at the same patient and at the same time, evidence of symptoms depending on their time of duration, handling of unexplained symptoms at the end of the diagnostic process, etc. cannot be taken into account by only one "medical knowledge" matrix.

5) In classification theory, the normal, healthy, typical, unchanged pattern or class representative from which the abnormal, ill, atypical pattern is to be separated is always regarded as one class.

6) DUBOIS and PRADE /43/ term them interval-valued fuzzy sets.

7) The example is expressed in notation of Q44 (see /64/), a question-answering language implemented in LISP. Furthermore, it shall be mentioned that in order to diagnose ulcer the procedure is incomplete with regard to the medical point of view.

REFERENCES

A Survey on Medical Diagnosis and Fuzzy Subsets

