Special topics in anesthesia

relaxant reduces the muscle pain after succinylcholine. However, it also prolongs the onset of NMB. The duration of action is slightly decreased following gallamine and d-tubocurarine, and increased when pancuronium is used. The exact mechanisms are unknown, but the nondepolarizing relaxant may bind to the cholinergic receptor and prevent succinylcholine from acting on the receptor. Pancuronium, and to a lesser degree vecuronium, are known to inhibit plasma cholinesterase.

Drugs interacting with plasma cholinesterase

Drugs that change plasma cholinesterase activity aggravate or unmask myasthenia gravis and affect NMB by succinylcholine, mivacurium and maybe cisatracurium, because these muscle relaxants are hydrolyzed by plasma cholinesterase.

References

M123
Knowledge-based definition of ARDS therapy entry criteria using fuzzy set theory

B. Trummer1, H. Steltzer2, G. Kolousek1, K. P. Adlassnigl1 and A. F. Hammerle2
1Department of Medical Computer Sciences, University of Vienna; 2Department of Anesthesia and General Intensive Care Medicine, Vienna General Hospital

Introduction

Treatment of patients suffering from ARDS is a time-consuming and complex task because of the lack of a uniform and broadly accepted definitions of the syndrome on one hand and various forms of therapy on the other. There are no clear guidelines based on the patients conditions on which form of therapy to apply. Therefore, a knowledge-based computer system has been implemented to develop a uniform set of therapy entry criteria. If those criteria are fulfilled, the expensive and risk ECCO2-R (extra corporal carbone-dioxid removal) has to be applied. If the criteria are not fulfilled, the patient may be treated by cheaper forms of therapy.

Methods

In a first step, parameters of 23 patients from three centers were collected and stored in a database called MedFrame/FuzzyARDS. The parameters of the patients were gathered at four phases: 24 h before bypass (phase I), 24 h after bypass (phase II), on day seven of the procedure (phase III) and at the end of the procedure (phase IV). The reason for this data collection over four times is necessary to evaluate not only the fulfillment at one point of time but even the dynamic behaviour of the parameters, too, because the dynamic in the patients condition may reflect the success or the failure of the therapy.

In the next step, the different therapy entry criteria from the centers were collected. Those therapy entry criteria of each center were originally defined as a simple list of conditions - one list per center. The definition of the criteria as provided by the
different centers is informal by nature, and thus not suited for
direct implementation in an exact evaluation system. To over-
come this inherent problem, we suggest to replace the classical
logic employing operators such as AND and OR that treat all
operand equally by a general scoring system which allows to
give weight to certain criteria to reflect their importance, en-
abling compensation of diverging parameters at the same time.
As already mentioned above, the therapy entry criteria of each
center are defined by a list of conditions, each of which has to
be fulfilled for the whole to work. In a precise environment,
therapy entry criteria are bound to cause problems when they
are interpreted literally: PaO₂/FIO₂ < 150 and PEEP > 10 for ex-
ample, is certainly fulfilled for a patient with PaO₂/FIO₂ = 149
and PEEP = 11, however it is not for one with PaO₂/FIO₂ = 50
and PEEP = 9, although these parameters indicate a much more
critical status. While the physicians will recognize the problem
and act accordingly, any objective evaluation system that inter-
prets AND as logical AND will answer yes in the first and no
in the second case. The fact that 50 is much less than 150 and 9
deviates only little from 10 requires some kind of compensation
in the evaluation of criteria which cannot be found in conven-
tional logic. Instead, it is achieved by two means: a scoring sys-
tem and the introduction of fuzzy set theory.

A score is defined as the sum of weights as obtained by evalu-
ation of a list of criteria. Each criterion consists of a condition (as
already defined by the different centers) followed by a weight. A
weight is any positive number that specifies the importance of
the criterion in case it is fulfilled. Weights are interpreted in real-
tion to each other, for example, a weight of two defines a con-
tion to be twice as significant as another one weighted by one.
To normalize the score, it is divided by the sum of all weights
in the list. Requiring a score of one equals the logical AND,
while requiring a score to be greater than zero is equivalent to
a logical OR. Changing the weights allows to adapt the criteria
so they can account for the significance of certain criteria.

The usage of a scoring system cannot account for the case
where one criterion is a near miss, rather than a clear deviation
from the definition. For this purpose, the concept of fuzzy limits
is introduced. Fuzzy limits may be regarded as a blurred bound-
ary defined by two thresholds, one separating clear fulfillment
from indecision/nonfulfilment and the other separating nonful-
fillment from indecision/fulfillment. Fuzzy boundaries are de-
noted by a pair of numbers, the first representing the value be-
low the condition is fully fulfilled, the second one denotes the
bound at which it is certainly not fulfilled. The space inbetween
is called the range of smooth transition. Instead of a clear yes/
no answer, it rather yields a degree of fulfillment represented
by a number between zero and 1.

The evaluation of the score starts with the evaluation of the
degrees of fulfillment using fuzzy limits. This evaluation is done
for each criterion for each patient at the four phases. Next, the
score of the four phases are evaluated using the scoring system.
The result of these two steps is a table for each patient consisting
of four columns and a number of rows that is equal to the
number of criteria. In the latter the mean value of each field of
the table over all patients is evaluated. Parameters with a differ-
ence between phase I and phase four is higher than 30, are possi-
able candidates for a uniform set of therapy entry criteria.

Results
The patient’s database consists of 23 patients from three differ-
ent centers. Two different sets of therapy entry criteria are used,
the first one consisting of eight, the other one of six criteria. For
both sets of criteria, a set of possible candidates for a minimal
list of therapy entry criteria was evaluated seperately. For the first
set, the list of possible candidates consists of PEEP, PIP, PaCO₂
and PaO₂/FIO₂, for the second one the list consists of PEEP, PIP,
PaCO₂, FiO₂ and SVO₂. Parameters like Qs/Qt, AMV and Morel
do not seem to be adequate candidates for a minimal set of
therapy entry criteria.

Acknowledgement
This research was supported by the “Medizinisch-Wissenschaf-
tlicher Fonds des Bürgermeisters der Bundeshauptstadt Wien
1996”.

References

1. Adlassnig K-P. Uniform Representation of Vagueness and
Imprecision in Patient's Medical Findings Using Fuzzy Sets.
2. Adlassnig K-P. Wissensbasierte Entscheidungsunterstü-
zung in der Medizin. Informatik in den Biowissenschaften.
3. Doyle RL, Zsafarski N, Modin GW, Wiener-Kronish JP, Mat-
thay MA. Identification of Patients with Acute Lung Injury.
American Journal of Respiratory and Critical Care Medicine 1995:
152: 1818–1824.
Erfahrungen mit der extracorporalen CO₂-Elimination bei
Patienten mit schwerem ARDS – eine aktuelle Übersicht.
Anästhesiologie Intensivtherapie Notfallmedizin 1989: 24:
283–288.
KJ. High survival rate in 122 ARDS patients managed ac-
dording to a clinical algorithm including extracorporal mem-
6. Murray JR, Matthay MA, Luce JM, Flick MR. An expanded
definition of the adult respiratory distress syndrome. Am