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Abstract The acquisition of precise values such as symptoms, signs, laboratory test
results, and diseases/diagnoses for expressing meaningful associative relationships
between medical entities has always been regarded as a critical part of developing
medical knowledge-based systems. After the introduction of fuzzy sets, researchers
became aware of the fact that a central problem in the use of fuzzy sets is construct-
ing the membership function values. The complication arises from the uncertainty
associated with assigning an exact membership grade for each element within the
considered fuzzy set. Type-2 fuzzy set handles this problem by allocating a different
fuzzy set to each element. This paper addresses the subject of medical knowledge
acquisition and representation by proposing consistent interval type-2 fuzzy relations
in the context of fuzzy inclusion as a measure of representing the degrees of associ-
ation between medical entities. The concept of interval type-2 fuzzy relation will be
introduced to represent the uncertainty and vagueness between medical entities.

1 Introduction and Motivation

Associative relationships between medical entities such as symptoms, signs, labora-
tory test results, and diseases/diagnoses can be established in different ways.Medical
knowledge has been formally represented by several symbolic and/or numerical, or
data- and knowledge-driven methods, all of which have been used successfully to a
certain extent (Fig. 4). An associative relationship between a symptom s and a dis-
ease d might be expressed in two types of measures: the necessity of occurrence of
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s with d, and the sufficiency of occurrence of s for d. In our context, the necessity of
occurrence1 may be interpreted as backward implication from d to s, i.e., (s ←− d),
while the sufficiency of occurrence2 may be viewed as forward implication from s to
d, i.e., (s −→ d). Similarly, negative associative relationships may also be specified
as backward implication or forward implication, (s ←− ¬d), and (s −→ ¬d).

The above relationships may be extended by considering multi-valued impli-
cations ∈ [0, 1]. For example,3 the necessity of occurrence may be represented as
multi-valued backward implication (s

µ←− d), wi th µ ∈ [0, 1], and the sufficiency of
occurrence as forward implication (s −→

µ
d), wi th µ ∈ [0, 1].

Human expert knowledge can be used to obtain values expressing possible degrees
of uncertainty, while statistical data may add to the respective body of knowledge.
These aspects have been successfully employed in representingmedical relationships
between symptoms, signs, laboratory test results and diseases in the differential
diagnosis support systems CADIAG-I [1–4] and CADIAG-II [5–11]. In CADIAG-
II, fuzzy set theory and fuzzy logic were used to represent the inherent unsharpness
of linguistic medical terms by fuzzy sets, and to represent partial truths of medical
relationships between these terms. Here, the frequency of occurrence and the strength
of confirmation correspond to the necessity of occurrence and the sufficiency of
occurrence. In addition, negative associative implicationswere considered to specify
a strength of exclusion. Semi-automatic statistical analyseswere thus able to support
the knowledge acquisition process [12, 13].

However, creating a solid medical knowledge base is not always a straightforward
process. It may be fraught with various problems, such as:

• Uncertainty: Exact values for expressing meaningful associative relationships are
not easily obtained. Human expert knowledge and statistical data analyses might
support this process. However, even quantitative medical information is never
100% accurate. Fuzzy systems have, in fact, superseded conventional methods in
a variety of scientific applications. However, type-1 fuzzy systems, whose mem-
bership functions are type-1 fuzzy sets, are able to cope with uncertainties. Type-2

1 Necessity: The occurrence of symptom s is said to be necessary for a disease d, then the occurrence
of d guarantees the occurrence of s; e.g., s: “increased serum glucose level” is obligatory for d:
“diabetes”:

(s ←− d)

2 Sufficiency: The occurrence of symptom s is said to be sufficient for the disease d, then the
existence of s guarantees the occurrence of d; e.g., s: “the detection of intracellular urate crystals
(tophi)” confirms d: “gout by definition”:

(s −→ d)

3 For example: The occurrence of s: “increased serum glucose level” is necessary for d: “diabetes”,
however s confirms “diabetes” only with 0.65:

(s ←−−
1

d, s −−→
0.65

d)
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fuzzy systems relying on type-2 fuzzy sets try to handle these uncertainties fur-
ther by assigning fuzzy sets or any interval ⊂ [0, 1], defining possibilities for the
primary membership. Furthermore, representing human expert knowledge and
interpreting statistical data about ignorance (what is unknown?) should also be
considered. Experts’ agreements or disagreements and conflicts among the vari-
ous sets of alternatives concerning the relevance of data [14] play a certain role in
increasing the degree of uncertainty.

• Inconsistency: Medical knowledge bases containing a large quantity of relation-
ships amongmedical entities might be affected by inconsistencies and incomplete-
ness. The quality of knowledge must be ensured by appropriate checking.

The aim of the present paper is to present the basic principles of dealing with the
above-mentioned aspects of uncertainties. We focus on the following aspects:

• Employing interval type-2 fuzzy relations to handle vagueness and uncertainty.
• Employing an interval-type-2-fuzzy-relation-based inclusionmeasure to represent
binary associative relationships between medical entities. This inclusion measure
corresponds to uncertain and imprecise implication relations; i.e. binary fuzzy
rules. The direction of inclusion measure corresponds to the necessity and suffi-
ciency of occurrence, which can be represented as uncertain backward and forward
implication relationships. The intervals express the possible degrees of inclusion
of one fuzzy set in another related fuzzy set, e.g., (s −−−→

I (s,d)
d), and (s ←−−−

I (d,s)
d),

where I (s, d), and I (d, s) ⊆ [0, 1]. I (s, d) and I (d, s) represent the uncertainty
about a fuzzy rule. Here, the concept of interval type-2 fuzzy relation was adopted
to reduce computational complexity.

• The knowledge base of such rules should be consistent. In other words, only
relationships with consistent uncertainties expressed in the form of consistent
intervals are considered.

1.1 Related Work

Interval-valued techniques have been suggested bymany researchers for representing
uncertainty and incompleteness. Zadeh [15] proposed type-2 fuzzy sets, whosemem-
bership functions themselves are specified by fuzzy sets. This step was necessary to
consider the possible uncertainty of fuzzy set functions themselves [16–19]. Bald-
win [20] proposed the assignment of necessity and possibility support boundaries
to logic programs in order to consider uncertainty. Turksen [21] employed compo-
sitional operations in connection with conjunctive and disjunctive normal forms to
handle approximate reasoning.

The concept of fuzzy inclusion has been addressed by some researchers [22–24].
It has been employed in some areas of computing, such as image processing and
natural language processing [25]. Helgason and Jobe [26] focused on perception-
based reasoning, utilizing medical quantities such as necessary causal ground and
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sufficient causal ground extracted from fuzzy cardinality. In addition, the different
enhancements of the CADIAG-II medical fuzzy decision support system [6, 10, 13]
are closely connected to the proposed model in the sense of considering type-1 fuzzy
relations in representing the frequency of occurrence and the strength of confirmation.
Another proposal is the use of bidirectional compound binary fuzzy rules to represent
medical knowledge without applying it to type-2 fuzzy set theoretical aspects and
notations [27].

Regarding the use of conditional probabilities as multi-valued implications [28],
the afore-mentioned study is similar to our model in terms of considering conditional
probabilities as a type of inclusion relationship.

In the following, theoretical definitions for type-2 fuzzy set, type-2 fuzzy relation,
and interval type-2 relations will be introduced on the basis of previous reports [16,
18, 27, 29–31], as preliminaries to the concept of interval type-2 fuzzy relation
describing a fuzzy inclusion.

1.2 Preliminaries: Fuzzy Sets and Relations

Definition 1 (Type-1 fuzzy set, Ã)4 A type-1 fuzzy set, denoted Ã on the referential
set X = {x1, x2, ..., xn} is defined as a function µ Ã : X → [0, 1], i.e., as the set of
pairs:

Ã = {(x, µ Ã(x))|x ∈ X}. (1)

This function is called amembership function.µ Ã(x) is the degree ofmembership of

the element x ∈ X in the setµ Ã(x). Each membership degreeµ Ã(x) is fully certain,
which means that in a type-1 fuzzy set, for each x value, there is no uncertainty
associated with the primary membership value.

Definition 2 (Type-2 fuzzy set, Ã̃) Based on [29, 31], a type-2 fuzzy set denoted Ã̃,
is defined as a function µ ˜̃A : X × [0, 1] → [0, 1], i.e., as the set of triples:

Ã̃ = {((x, u), µ
Ã̃
(x, u))|∀x ∈ X,∀ u ∈ Jx ⊆ [0, 1] }

here,
0 ! µ

Ã̃
(x, u) ! 1

For any given value of x , theµ
Ã̃
(x, u), ∀u ∈ Jx , is a type-1membership function.

Jx is used to reference the set of u values associated with each point in the X -axis.

4 Based on [29, 31].
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Based on Definition 2, a membership function of a type-2 fuzzy set can be repre-
sented by its graph in 2-D space5:

• The primary variable or the X-axis,
• the secondary variable or the Y-axis denoted by u, and
• the Z-axis, the membership function value (secondary grade); i.e. µ

Ã̃
(x, u) ∈

[0, 1].
When uncertainties are removed, a type-2 membership function reduces to a

type-1 membership function; i.e. the third dimension disappears.
To reference and describe the uncertainty in the primary memberships of a type-2

set, the concept of footprint of uncertainty or FOU is defined as:

Definition 3 (Footprint of uncertainty, FOU) Let Ã̃ be a type-2 fuzzy set, then:

FOU = {µ
Ã̃
(x, u)|(x, u) ∈ X × [0, 1]}. (2)

We can represent FOU as the union of all primary memberships:

FOU ( Ã̃) =
⋃

x∈X
Jx

In Figs. 2 and 6, FOU is represented as shaded regions. Here, FOU is useful to access
the minimal values and maximal values of uncertainties.

In our approach to simplify the complexity involved in a type-2 fuzzy set, the
concepts of interval fuzzy set and interval type-2 fuzzy relation have been adopted
to represent the uncertainty.

Definition 4 (Interval type-2 fuzzy set) A type-2 fuzzy set is an interval type-2 fuzzy
set, if for every x there exists an interval [u, u] such that µ(x, u) = 1 for all u from
this interval and µ(x, u) = 0 for all other u.

Definition 5 (Type-1 fuzzy relation, R̃)Let X = {x1, x2, x3, ..., xn} and Y = {y1, y2,
y3, ..., ym} be referential sets. A type-1 fuzzy relation, denoted R̃ on X ×Y , is defined
as:

R̃ : X × Y → [0, 1],

R̃ = {(xi , y j ), µR̃(xi , y j )},

5 For illustration see Fig. 1 in context of type-2 fuzzy relations.
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with the membership function:

µR̃(xi , y j ) ∈ [0, 1].

For examples for type-1 fuzzy relations, see footnote 3.

Now we can introduce the concept of interval type-2 fuzzy relation. This concept
is very important, as it will be employed in establishing uncertain and imprecise
relationships between medical entities.

Definition 6 (Interval type-2 fuzzy relation) Let X = {x1, x2, x3, ..., xn} and Y =
{y1, y2, y3, ..., ym} be referential sets. An interval type-2 fuzzy relation, denoted R̃̃
on X × Y , is defined:

R̃̃ : X × Y → F ([0, 1]),

where F ([0, 1]) represents the set of all subintervals of the interval [0,1]:

F ([0, 1]) = {[xL , xU ] : xL , xU ∈ [0, 1], xL ≤ xU },

R̃̃ =
{
(xi , y j ),

[
µR̃(xi , y j )L , µR̃(xi , y j )U

] }
,

with the primary membership function:

µR̃(xi , y j )L , µR̃(xi , y j )U ∈ [0, 1]

and,

∀(xi , y j ), µR̃(xi , y j )L ! µR̃(xi , y j )U

representing the lower and upper bound of R̃̃ elements respectively.

Based onDefinitions 6 and 4, a type-2 fuzzy relation interval value is characterized
by specific lower and upper boundaries instead of a fuzzy set, as is the case in type-2
fuzzy relations (Fig. 1). As all values of the secondary membership function equal
1, the uncertainty is represented by associated intervals.6

A type-2 fuzzy inclusion relation is characterized by a fuzzy set (Fig. 2).

6 An example of an interval type-2 relation: s: “increased serum glucose” and d: “diabetes”:
(s ←−−−

1
d, s −−−−→

[0.6,0.7]
d);

s always occurs with d but it only confirms d with certain possible values within [0.6,0.7].
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Fig. 1 Interval type-2 fuzzy relation (Definition 6)

Fig. 2 Type-2 fuzzy relation. The footprint of uncertainty (FOU) is represented by the
lower-min and upper-max of possible uncertain degrees of a type-2 fuzzy relation. Each end shows
some uncertainties; we use lower-min and lower-max for the left-end, upper-min and upper-max
for the right-end uncertainties
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2 Associative Medical Relationships

Representing medical entities as fuzzy sets and establishing type-1 or type-2 fuzzy
inclusion relationships among them provides us with a framework to represent uncer-
tain medical knowledge. Binary fuzzy inclusion or the subsethoodmeasure describes
the degree to which a fuzzy set is included in another. In other words, it expresses the
degree of subsethood relation between two fuzzy sets [27]. This kind of inclusion is
useful to express the degree of association between medical entities represented as
fuzzy sets. The necessity of occurrence and the sufficiency of occurrence between
fuzzy medical entities covers the most important aspects of establishing an associa-
tive relationship between different medical entities. These aspects can be interpreted
as the degree to which a medical entity is implied in another. Furthermore, consid-
ering interval type-2 fuzzy relations relying on an inclusion measure enables us to
consider the uncertainty and vagueness between associative medical entities.

In the following we will present interval-valued fuzzy relations relying on the
degree of subsethood to model the uncertainty and imprecision:

Definition 7 (Type-1 fuzzy inclusion relation, R̃I) Let Ã and B̃ be fuzzy subsets of
U = {x1, x2, ..., xn}. A type-1 fuzzy inclusion relation, denoted R̃I, is defined as

R̃I : F (U) × F (U) → [0, 1],

where F (U) represents the set of all fuzzy sets inU,

R̃ =
{(

( Ã, B̃), µR̃I
( Ã, B̃)

)}

with

µR̃I

(
Ã, B̃

)
"

∑

x∈U
min

(
µ Ã(x), µB̃(x)

)

∑

x∈U
µ Ã(x)

∈ [0, 1] and

the scaler cardinali t y o f A, |A| =
∑

x∈U
µ Ã(x) *= 0.

(3)

Scalar inclusion measure expresses to which degree a fuzzy set is included in another
one; i.e.

µR̃I
( Ã, B̃) " degree( Ã ⊆ B̃) ∈ [0, 1] (4)

and,
µR̃I

(B̃, Ã) " degree(B̃ ⊆ Ã) ∈ [0, 1] (5)
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These relations can be interpreted in terms of CADIAG-II as strength of confirmation
(µc):

(s −→
µc

d), wi th µc ∈ [0, 1]

and frequency of occurrence (µo):

(s
µo←− d), wi th µo ∈ [0, 1]

or sufficiency and necessity respectively.

Definition 8 (Interval type-2 fuzzy inclusion relation, R̃̃ I ) The uncertainty of a type-
2 fuzzy inclusion relation, denoted R̃̃I, is associated with intervals given by type-1
fuzzy relation:

R̃̃I : F (U) × F (U) → F ([0, 1]),

where F ([0, 1]) represents the set of all subintervals of the interval [0,1]:

F ([0, 1]) = {[xL , xU ] : xL , xU ∈ [0, 1], xL ≤ xU },

such that
R̃̃ I =

{(
( Ã, B̃),

[
µR̃ I

( Ã, B̃)L , µR̃I
( Ã, B̃)U

])}
,

µR̃ I
( Ã, B̃)L ! µR̃I

( Ã, B̃)U

The interval [µR̃ I
( Ã, B̃)L , µR̃I

( Ã, B̃)U ] expresses the certain possible consistent

degrees of the scalar inclusion relationship between Ã and B̃, see Fig. 7.
Notably, a type-2 fuzzy inclusion relation interval value is characterized by

specific lower and upper boundaries, while a type-2 fuzzy inclusion relation is char-
acterized by a fuzzy set (Fig. 7 vs. Fig. 3).

Definition 9 (Uncertain associative medical relationships) Let E = {e1, e2, e3, ...,
en} be a set of medical entities represented as fuzzy sets. Uncertain associative
relationship between medical entities can be interpreted as type-2 fuzzy inclusion
relation.
The focus of this presentation will be on interval type-2 fuzzy relation, R̃̃ I :

R̃̃I : F (E) × F (E) → F ([0, 1]).
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Fig. 3 General type-2 fuzzy inclusion relation. Values of type-1 fuzzy inclusion relation are char-
acterized by type-2 inclusion relation. Values between observedminimum andmaximum are certain

2.1 Acquiring Data for Associative Medical Relationships

Twomajor approaches may be used for dealing with medical knowledge acquisition,
namely the classical knowledge-driven approach (symbolic representation in the
context of linguistic uncertainty and imprecision), and the data-driven approach.
The latter has been given greater importance in recent years, as we are approaching
the era of big data and deep learning. Concrete data for instantiating associative
medical relationships can be obtained from a variety of sources:

• Evaluating linguistic documentations by medical experts [13].
• Statistical analyses of medical patient databases [12].
• Data discovery in medical databases, i.e. utilizing data science methods on patient
databases and documentations, such as predictive classification or descriptive
methods (e.g., associative rule analysis), Fig. 4.

Domain experts cannot always deliver precise and consistent values for associative
relationships without evaluating a large quantity of medical data. For example, a
symptom that always occurs in a certain disease might not be sufficient to confirm
the disease. One example of strong relationshipswould be“highly increased amylase
levels almost confirm acute pancreatitis”. This type of associative relationship can
be represented by considering a compound an interval type-2 fuzzy relation (see
example in footnote 6).

The process of refinement of such intervals should be concluded by checking
them for consistency. It should be noted that global consistency might refine the
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Fig. 4 Medical context of knowledge-driven and data-driven approaches for capturing uncertainty
at the medical knowledge acquisition process. Interval-valued uncertainty is present at all levels
of knowledge acquisition. In this Figure, the uncertain relationships such as (s −−−→

strong
d) can be

expressed in terms of interval type-2 fuzzy relation, formalized as (s −−−−→
[0.85,1]

d)

upper and lower values, so that useful global minima might be acquired. Estab-
lishing such uncertainties requires a stepwise knowledge acquisition process and
refinement; some cases are provided in Fig. 5. In such processes, an associative rela-
tionship might start with no prior knowledge or may be a simple association, such
as a positive or negative correlation, and might end with a type-1 fuzzy relation,
(Definition 1, R̃I ) or a consistent interval (Definition 8, R̃̃ I ). In each step or phase,
the expert may add knowledge that would refine the degree of imprecision and uncer-
tainty. However, as associative relationships in all phases might be affected by some
degree of uncertainty, useful inferential knowledge can be successively added to the
acquisition process.

Furthermore, initial values can be estimated statistically by analyzing a medical
database. This approach has been successfully employed as semi-automatic knowl-
edge acquisition within the knowledge-based system CADIAG-II/Rheuma [3, 12].
In this context, necessity (frequency of occurrence) may be interpreted as P(S/D),
and sufficiency (strength of confirmation) as P(D/S), which might be estimated via
Bayes’ theorem and refined or transformed to fuzzy values.
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Fig. 5 Example of representing medical uncertainty in the context of necessity and sufficiency of
occurrence between medical entities based on the concept of interval type-2 fuzzy relation. The
boundaries of FOU, footprint of uncertainty, can be reduced by a refinement process checking the
boundaries for local and global consistency

Fig. 6 The composition of type-1 binary fuzzy relations results in a type-2 relation when enhancing
it with uncertainty by a local triangular dataset representation
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3 Inferencing Type-2 Fuzzy Relation

As mentioned earlier, a variety of sources may be used to acquire concrete data for
instantiating associative medical relationships, such as evaluating linguistic docu-
mentations, statistical analysis of medical patient databases, or data-driven tasks.
However, the creation of knowledge bases with a large number of relationships
betweenmedical entitiesmight result in inconsistencies and incompleteness. Further-
more, in many cases, decision-making under imprecision and uncertainty is required.

Several human domain experts might suggest inconsistent estimations of asso-
ciative relationships in the context of relevance estimation and assessment. In some
cases, an agreement or disagreement analysis of the involved experts should be con-
sidered. The grade of agreement or disagreement or bias might be used as a reference
for considering the degree of uncertainty [14].

To access this important aspect, we need an inferential model that is capable of
computing all possible consistent values for a type-1 and even type-2 fuzzy relation.
Values lying outside these intervals should be considered as inconsistent values (Fig.
7). Systems affected by inconsistencymight reduce the performance of a knowledge-
based system.

Fig. 7 Interval type-2 fuzzy relation representing an interval-valued binary fuzzy relationship. The
certain possible values withµ

R̃̃ I
(xi , y j ) = 1 are consistent. The final goal is to compute the interval

of such type-2 inclusion fuzzy relations
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3.1 Inferential Uncertain Relations

This illustration (Fig. 7) extends from the inconsistent interval of uncertainty to cer-
tainly not possible values for uncertainties. The present paper will be limited to intro-
ducing the basic concept of the inferential model in the case of type-1 fuzzy relation.7

This type has beenwidely used in the different implementations ofCADIAG-II-based
knowledge-based systems [5–11].

Notably, the computed consistent intervals might be interpreted as boundaries for
possible uncertainties arising from assuming the certainty of precise values such as
µ Ã(x). Figure 6 shows that the composition of two type-1 fuzzy relations, i.e. certain
fuzzy relations, would propagate uncertainty in form of consistent intervals.8

In the following, we will focus on the basic case of inferring consistent intervals
within locally investigated triangular datasets to infer consistent intervals and their
minima for the upper and lower boundaries; i.e. FOU. In this model, we differentiate
between local and global uncertainty.

LetM be a triangular dataset of medical entities consisting of point-valued type-1
relations (Definitions 5, 7), R̃I:

M = {e1 −−−→
a2

e2, e1
a1←−−− e2,

e2 −−−→
b2

e3,

e2
b1←−− e3}

The possible consistent type-1 fuzzy relationships between e1 and e3 can be com-
puted as interval type-2 relation, i.e.:

M # {e1 −−−→
[x1, x̄1]

e3, e3 ←−−−
[x2,x̄2]

e1}

The interval [xi , x̄i ] represents the lower and upper boundaries for uncertainty;
i.e.:

x1 = µR̃ I
(e1, e3)L

x̄1 = µR̃ I
(e1, e3)U

x2 = µR̃ I
(e3, e1)L

x̄2 = µR̃ I
(e3, e1)U ,

7 Considering all other aspects, such type-2 inference exceeds the scope of the current presentation.
8 Obligatory sufficiency and necessity of yield certainty, refer to Fig. 6, i.e.:

µR̃I
(x, y) = 1, µR̃I

(y, x) = 1, µR̃I
(y, z) = 1, and µR̃I

(z, y) = 1
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and they are computed as follows:

x1 =





a2 − a2

a1
· (1 − b2) if b2 > 1 − a1, a1 *= 0

0 otherwise
(6)

x̄1 =






min
(
a2,

(
b2 · a2
a1

))
+min

(
1 − a2,

((
b2 · a2
b1 · a1

)
· (1 − b1)

))

if b1 *= 0, a1 *= 0
0 if b1 = 1, a1 = a2 = 0
1 − a2 otherwise

(7)

x2 =





x1 ·

(
b1 · a1
b2 · a2

)
if b2 *= 0, a2 *= 0

0 otherwise
(8)

x̄2 =






x̄1 ·
(
b1 · a1
b2 · a2

)
if b2 *= 0, a2 *= 0

0 if b1 = 0, b2 = 0, a1 = 1
1 − b1 otherwise

(9)

The derivation of these formulae can be achieved by considering all possi-
ble inclusion degrees within the triangular dataset M; such as degree(e1 ⊂ e2),
degree(e2 ⊂ e1), degree(e2 ⊂ e3), and degree(e3 ⊂ e2) in context of comput-
ing the minimal and maximal degree(e1 ⊂ e3), and degree(e3 ⊂ e1). All these
relationships can be expressed in terms of constraints represented as computable
linear equalities and/or inequalities. Solving all these constraints in reference to
|e1| =

∑
x∈U

µe1(x) yields an interval of possible degrees for (e1 ⊃ e3) and (e3 ⊃ e1).

The basic idea of the derivation can also be found in [27].

Example 1 Let M be a triangular set of relations of a type-1 fuzzy relation;
Definition 5:

M = {e1 −→
0.5

e2, e1
0.75←−− e2,

e2 −−→
1

e3,

e2
0.25←−− e3}

Based on the Eqs. 6 and 7, all instances of possible relationships are:
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(e1 −−−→
[x1, x̄1]

e3) ∈ S,

where S:
S = {(e1 −−−→

[x1, x̄1]
e3)|[x, x̄] ⊆ [0.5, 1]} (10)

are consistent instances withM in terms of uncertainty.

The computation of globally consistent intervals requires inference of minimal
intervals globally, which can be implemented incrementally and recursively.

3.2 Application Potential

As mentioned earlier, this approach is founded on the following aspects:

• Employing interval type-1 and type-2 fuzzy relations expressing the necessity and
sufficiency of occurrence in the context of establishing associative relationships
between medical entities; e.g., point-valued, linguistic and interval-valued:

(s −−−→
µ

d, s −−−→
strong

d, s −−−→
[a,b]

d)

The basic concepts were partly employed in designing a CADIAG-II-based sys-
tem such as MedFrame/CADIAG-IV, and implemented as a stepwise incremental
refinement acquisition system [13].

• Inferencing useful consistent intervals to refine and possibly derive new associative
relationships, and to check the knowledge base for logical inconsistencies.9

• Finally, integrating the compositional rule of inference within this model in con-
nection with an inference engine within a decision support system.

The following example illustrates the application potential of integrating the infer-
ence model into refinement and data quality assurance:

Example 2 Let M be a triangular dataset of compound relationships as defined in
Example 1. Based on 3.1, the inferred relationships:

(e1 −−−−−−→
[0.5,1]

e3)

and

9 The authors are working on integrating the introduced inference model within the stepwise refine-
ment process.However, further researchwill be needed to consider complex relationships expressing
logical combinations of medical entities on the left side of a rule in the context of the global and
local consistency.
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(e1 ←−−−−−−
[0.187,0.375]

e3)

can be represented as a consistent bi-directional (compound) interval-valued type-2
relationship, (Definition 8)

e1
[0.187,0.375]←−−−−−→

[0.50,1]
e3. (11)

Such relationships are very useful for the following tasks:

• Checking an relationship for logical consistency (10). For instance, the rule in
(12) describes a possible relationship expressing the degree of sufficiency and it
is consistent withM with some certainly possible values:

e1 −−−−−→
[0.75,0.95]

e3, (12)

while the relationship in (13):

e1 −−−−−−→
[0.25,0.345]

e3 (13)

represents an inconsistent relationship, as the values exceed the scope of the cer-
tainly possible values, see Fig. 7.

• The relationship between e1 and e3 in (11); e.g., e1 −−−−→
[0.50,1]

e3, and (e1 ←−−−−−−
[0.187,0.375]

e3) can be added to the knowledge base to increase some issues related to perfor-
mance and completeness.

• Under the assumption that previous knowledge has already been validated on
consistency, this approach relies on consistent interval propagation. In case an
expert would propose new values for (ei → e j ), the new values are expected to
lie within the certainly possible values of the computed formula. However, further
interval refinement is possible by considering new knowledge. The refinement
process (i.e. narrowing the fingerprint of certainty) can be achieved by computing
the global consistency of the model under the newly added values.

• Finally, integrating the compositional rule of inference within this inference, we
can follow an inference engine within a decision support system.

4 Conclusion and Future Perspectives

This paper describes the handling of some crucial aspects of knowledge representa-
tion, relying on the acquisition of consistent inferential associative relationships. The
adopted approach emphasizes the importance of considering fuzzy sets and type-2
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relations with a view to the establishment of associative medical relationships within
an inferential model, considering uncertainty, and checking for logical consistency.
Many aspects of this model have been successfully employed by different imple-
mentations of CADIAG-II-based systems. For future work, the integration of this
approach within a stepwise refinement of the knowledge acquisition process will be
significant for ensuring data quality and enhancing performance. Furthermore, an
interval-based compositional rule of inference might lead to a form of reasoning that
relies on inferencing consistent uncertain intervals. Finally, it would be desirable to
fine-tune the established intervals by integrating data-driven approaches. Clustering,
relationships, and interval-valued-based deep learning might be useful approaches.
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