ABSTRACT: Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in medicine for tasks such as the interpretation of sets of medical findings, the single or differential diagnosis of diseases from various areas of medicine, the optimal selection of medical treatments, and for real-time monitoring of patient data. This was verified by trials with the following systems: FuzzyKBWean—an open-loop fuzzy control system for optimization and quality control of the ventilation and weaning process of patients after cardiac surgery at the intensive care unit (ICU), FuzzyARDS—an intelligent on-line monitoring program for ICU data from patients with acute respiratory distress syndrome (ARDS) employing fuzzy trend detection and fuzzy automata, and CADIAG-II and MedFrame/CADIAG-IV—framework programs (shells) for consultation systems to aid in the differential diagnostic process in Internal Medicine. All the above-mentioned computer systems have reached the state of extensive clinical integration and testing at the Vienna General Hospital.

KEYWORDS: intensive care unit (ICU), fuzzy control, FuzzyKBWean, fuzzy trend detection, fuzzy automaton, FuzzyARDS, Internal Medicine, consultation system, CADIAG-II, MedFrame/CADIAG-IV

INTRODUCTION

Fuzzy set theory and fuzzy logic have a number of characteristics that make them highly suitable for modelling uncertain information upon which medical concept forming, patient state interpretation, and diagnostic as well as therapeutic decision making is usually based. Firstly, medical entities such as symptoms, signs, test results, diseases and diagnoses, therapeutic and prognostic information can be defined as fuzzy sets. The inherent vagueness of these entities will thus be conserved. Secondly, fuzzy logic offers reasoning methods capable of drawing strict as well as approximate inferences. Medicine demands this broad range of possibilities because the body of medical theory includes definitional, causal, statistical, and heuristic knowledge. Practical medicine even has to accept incomplete medical theories where only vague and uncertain empirical information guides the necessary medical procedures. Finally, fuzzy automata may be used as high level patient monitoring devices with real time access to medical information systems. Annotated bibliographies, editorials, and historical notes can be found in Adlassnig (1982), Maiers (1985), Böhm (1990), Steimann (1997), and Teodorescu (1998).

METHODS AND MATERIAL

Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in medicine for tasks such as the interpretation of sets of medical findings, the single or differential diagnosis of diseases from various areas of medicine, the optimal selection of medical treatments, and for real-time monitoring of patient data. This was verified by trials with the following systems:

FUZZYKBWEAN: KNOWLEDGE-BASED WEANING FROM ARTIFICIAL VENTILATION

FuzzyKBWean is an open-loop fuzzy control system for optimization and quality control of the ventilation and weaning process of patients after cardiac surgery at one of the intensive care units (ICUs) of the Vienna General Hospital. The system is directly connected to the Patient Data Management System (PDMS) of the ICU and runs on the bed-side
computer, as is described in Schuh (1998b). In one minute intervals, it actively accesses the PDMS data base and takes over the respective medical data.

According to the well-known structure of fuzzy control systems, a fuzzification step is followed by the fuzzy rule evaluation. The rules in FuzzyKBWean contain patient’s physiological parameters and the actual ventilator settings in the fuzzy antecedents, yet crisp proposals for appropriate and timely new settings of the ventilator in the consequences of the rules. The application of the Sugeno control method to combine rule output of the same kind is thus possible (Schuh (1998a, 1999)). Koller (1999) describes a fuzzy set and rule editor FuzzyKBWEdit that puts the cooperating physicians in the position to carry out knowledge base changes directly at the ICU ward.

FUZZYARDS: KNOWLEDGE-BASED MONITORING AND DECISION SUPPORT

FuzzyARDS/MONITOR is an intelligent on-line monitoring program for ICU data of patients with acute respiratory distress syndrome (ARDS) (cf., Steltzer (1999)). Its clinical aim is to detect ARDS in intensive care patients as early as possible and to give appropriate therapy advice.

ARDS is an ill-defined medical entity and is modelled using the concept of fuzzy automata. States in these automata are considered to be patient’s pathophysiological states or entry criteria for the different forms of applicable therapies. Patients may partially be assigned to one or several states. Transitions in the automata carry fuzzy conditions that have to be true or partially true to go from one state to another. Fuzzy conditions are usually high level medical concepts including linguistically expressed trend information. An extended description of these formal concepts can be found in Steimann (1994a, 1994b). These high level concepts are permanently evaluated in a data-to-symbol conversion step according to an adjustable time granularity.

In the present phase of development, an international study is being conducted to compare and finally improve the various forms of ARDS definitions found at the study centres and compare their therapy entry criteria. A web-based study system FuzzyARDS/STUDY was built allowing data entry at the respective study centres including the definition of fuzzy criteria, the calculation of fuzzy scores, and patient data evaluations based on interval techniques to allow missing variables in the given data sets. Extended reports on this development can be found in Steltzer (1996) and Trummer (1998, 1999).

CADIAG-II AND MEDFRAME/CADIAG-IV: COMPUTER-ASSISTED DIAGNOSIS IN INTERNAL MEDICINE

The CADIAG project is a long term effort to assist in the differential diagnostic process in Internal Medicine by computer programs. CADIAG-II was formally developed and practically tested in 1979/80 (Adlassnig (1980)). The underlying clinical issues are: indicating all possible diseases that explain the given pathological findings of the patient, offering further useful examinations to confirm or exclude gained diagnostic hypotheses or to find stronger support for them, and searching for patient’s pathological findings not yet accounted for by CADIAG-II’s proposed diagnoses. CADIAG-II was described at various stages of development (Adlassnig (1986, 1988)) and tested in different areas of Internal Medicine (Adlassnig (1989a, 1989b), Leitich (1996)). It is fully integrated into the medical information system WAMIS of the Vienna General Hospital (Adlassnig (1986)).

MedFrame/CADIAG-IV is the present successor of the former CADIAG systems. In this system not only positive and negative diagnostic hypotheses but also therapy proposals are offered. It is intended to build a large framework for the development of knowledge-based systems in medicine. An integrated patient data and knowledge base, knowledge base editor modules, differential diagnosis and therapy modules, and an immediate case evaluation module will form the core of MedFrame/CADIAG-IV. Descriptions of parts of MedFrame/CADIAG-IV can be found in Kolousek (1997), Boegl (1996, 1997, 1998), and Brein (1998).

RESULTS

All the above-mentioned computer systems have reached the state of extensive clinical integration and testing at the Vienna General Hospital.

An early study of FuzzyKBWean was published in Hiesmayr (1993); a recent clinical trial—as reported in Kolb (1999)—showed that a number of appropriate proposals for ventilator setting changes are given at a very early stage, earlier then the attending personal would react. Thus the proposed adjustments to stabilize the ventilated patient, to start
and end the weaning process earlier, and thus be able to extubate the patient at an earlier point of time yielded to less suffering of the patient and less costs.

Based on the available FuzzyARDS/STUDY system, patient data sets are entered and evaluated in ARDS consensus meetings. The results yielded to better understanding of ARDS as a life threatening disease and its treatment (Steltzer (1999)). A prototypical application of FuzzyARDS/MONITOR is available for clinical tests (Steimann (1994b)). Some problems have still to be solved, e.g., the definition and incorporation of idle and delay functions in the on-line monitor to avoid oscillations in the patient states.

The integration of CADIAG-II into the medical information system WAMIS and its extended retrospective and prospective testing with real patient data—a recent study is described in Leitich (1999)—forms a broad basis of practical and theoretical knowledge to develop a new and extended system for the ambitious aim to assist the mental diagnostic and therapeutic activity of physicians, nurses, and laboratory personal. The MedFrame CADIAG-IV system— presently in an active development phase—will finally make a huge step towards support and automation of subareas of medical practice.

CONCLUSION

The conducted clinical studies showed the appropriateness of the chosen formal approaches with respect to the necessary medical applicability, the achieved correctness of the results, and also the robustness of the respective patient data and fuzzy knowledge representation and the selected fuzzy inference mechanisms. They further revealed the intuitive understanding of the basic ideas of fuzzy set theory and of fuzzy logic by the medical users. So it is easily understood that the transition from healthy to ill, from normal to pathological which is modelled by fuzzy sets in the above-mentioned knowledge-based systems is a gradual transition and not a crisp one and furthermore, that the partial firing of rules with partially valid antecedent naturally diminishes the validity of the resulting consequence.

Fuzzy set theory and fuzzy logic employed in knowledge-based systems will become a standard methodology of systems with computational intelligence in medicine.

REFERENCES


Kolb, M.; Schuh, Ch.; Koller, W.; Zelenka, Ch.; Adlassnig, K.-P.; Hiesmayr, M., 1999, “FuzzyKBWean: from the written protocol to a fuzzy control expert system for weaning from artificial ventilation”, submitted to AI in Medicine.


