INTERNATIONAL CONGRESS OF IMMUNOGENOMICS AND IMMUNOMICS

IMMUNOLOGY FOR THE 21st CENTURY
Join us, share ideas and accelerate your research
Immunogenomics + Immunoproteomics + Immunoinformatics
= IMMUNOMICS

A joint meeting of the
2nd Basic and Clinical Immunogenomics
and
3rd Immunoinformatics (Immunomics) Conferences

October 8-12, 2006 - Budapest, Hungary

Organized by
Hungarian Society for Immunology
International Immunomics Society
Hungarian Academy of Sciences

Main patrons:
Prof. Dr. Szilveszter E. Vizi, President of Hungarian Academy of Sciences
Dr. Kalman Kovacs, Senior State Secretary of the Ministry of Environment and Water
Prof. Dr. Tivadar Tulassay, Rector of Semmelweis University
Erik Bogsch, Managing Director of Gedeon Richter Ltd.
OBJECT ORIENTED IMPLEMENTATION OF A SIMULATION MODEL FOR T-CELL ACTIVATION

M. Cibena, W. Schreiner, M. Berger and R. Karch

Core Unit for Medical Statistics and Informatics, Medical University of Vienna, Vienna, Austria
E-mail: office-bcb@meduniwien.ac.at

The interaction between T-Cells (TCs) and antigen presenting Cells (APCs) is characterized by a large variety of different interaction partners, in particular within the TC (TCR, Lck, CD4, CD48, zap) and MHC within the APC. No computer model whatsoever can include all possible candidates, not to speak of adequately assigning physiological values to their parameters. When building a simulation software it’s clear from the start that several (different) sets of partners (molecules) with correspondingly different interactions have to be modelled, evaluated and compared. This necessitates to add and withdraw molecules (objects) of different types with high flexibility. These requirements strongly call for an object oriented approach of implementation which we followed in the framework of Java.

Besides the Cell classes for the APC and the TC we implemented a base Molecules class (implementing some basic functions) and it’s derived subclasses like the TCR and MHC class. Furthermore there are classes for parameter input, corresponding to the concept of Java’s property files, and classes for molecule interaction.

The output in ASCII coded format is submitted to the Statistical Analysis System (SAS) for evaluation. The simulation parameters also are submitted to SAS in eXtendible Markup Language (XML) format. We also implemented a software management, a batch processing mode and the possibility of intermediate checkpoints to continue or rerun simulation jobs.

REFERENCES:
Introduction
The interaction between T-Cells (TCs) and antigen presenting cells (APCs) is characterized by a large variety of different interaction partners, in particular within the TC (TCR, Lck, CD4, CD48, zap) and MHC within the APC.

Software design in an interdisciplinary cooperation
Modeling and simulation of immune reactions has to cope with continuously changing aspects of theory and experimental results. Several paradigms are circulated within the scientific community, putting emphasis on different sets of ‘most important’ molecules. Therefore we tried from the start to design the software as flexible as possible. Additionally, we evaluated the use of ‘design tools’, such as Omondo. With their help, standardized diagrams in ‘Unified Modeling Language’ (UML) can be produced. On the one hand these diagrams can be readily discussed with immunologists, even if they are not familiar with software concepts. In particular, the decision trees within the model, representing the branching into different reaction pathways, proved extremely helpful.

Acknowledgements
This pilot project is carried out in the context of the Austrian Grid Consortium, whose activities are also of relevance to Research/Education-application support.

In part this work is supported by the Austrian Grid Project of the Austrian Ministry of Education, Science and Culture (contract no. GZ 4003/2-VI/4c/2004).

Adequate computational power has been made available through the Austrian Grid project.