Pharmacoresistance in Epilepsy: A Pilot PET Study with the P-Glycoprotein Substrate R-[11C]verapamil

Summary: Purpose and Methods: Regional overexpression of the multidrug transporter P-glycoprotein (P-gp) in epileptic brain tissue may lower target site concentrations of antiepileptic drugs and thus contribute to pharmacoresistance in epilepsy. We used the P-gp substrate R-[11C]verapamil and positron emission tomography (PET) to test for differences in P-gp activity between epileptogenic and nonepileptogenic brain regions of patients with drug-resistant unilateral temporal lobe epilepsy (n = 7). We compared R-[11C]verapamil kinetics in homologous brain volumes of interest (VOIs) located ipsilateral and contralateral to the seizure focus. Results: Among different VOIs, radioactivity was highest in the choroid plexus. The hippocampal VOI could not be used for data analysis because it was contaminated by spill-in of radioactivity from the adjacent choroid plexus. In several other temporal lobe regions that are known to be involved in seizure generation and propagation ipsilateral influx rate constants \(k_1 \) and efflux rate constants \(k_2 \) of R-[11C]verapamil were descriptively increased as compared to the contralateral side. Parameter asymmetries were most prominent in parahippocampal and ambient gyrus (\(K_1 \), range: \(-3.8\% \) to \(+22.3\% \); \(k_2 \), range: \(-2.3\% \) to \(+43.9\% \)), amygdala (\(K_1 \), range: \(-20.6\% \) to \(+31.3\%) ; \(k_2 \), range: \(-18.0\% \) to \(+38.9\% \)), medial anterior temporal lobe (\(K_1 \), range: \(-8.3\% \) to \(+14.5\% \); \(k_2 \), range: \(-14.5\% \) to \(+31.0\% \)) and lateral anterior temporal lobe (\(K_1 \), range: \(-20.7\% \) to \(+16.8\% \); \(k_2 \), range: \(-24.4\% \) to \(+22.6\%)). In contrast to temporal lobe VOIs, asymmetries were minimal in a region presumably not involved in epileptogenesis located outside the temporal lobe (superior parietal gyrus, \(K_1 \), range: \(-3.7\% \) to \(+4.5\% \); \(k_2 \), range: \(-4.2\% \) to \(+5.8\% \)). In 5 of 7 patients, ipsilateral influx (\(k_1 \)) increases were more pronounced than ipsilateral efflux (\(k_1 \)) increases, which resulted in ipsilateral reductions (10\%–26\%) of R-[11C]verapamil distribution volumes (DV). However, for none of the examined brain regions, any of the differences in \(K_1 \), \(k_2 \) and DV between the epileptogenic and the nonepileptogenic hemisphere reached statistical significance (\(p > 0.05 \), Wilcoxon matched pairs test). Conclusions: Even though we failed to detect statistically significant differences in R-[11C]verapamil model parameters between epileptogenic and nonepileptogenic brain regions, it cannot be excluded from our pilot data in a small sample size of patients that regionally enhanced P-gp activity might contribute to drug resistance in some patients with temporal lobe epilepsy. Key Words: Antiepileptic drugs—Pharmacoresistance—Temporal lobe epilepsy—P-glycoprotein—Positron emission tomography—R-[11C]verapamil.

About one-third of patients suffering from epilepsy do not respond to treatment with antiepileptic drugs (AEDs). Pharmacoresistant epilepsy is characterized by a lack of treatment response to several different AEDs, despite the fact that these drugs possess different modes of action. This observation argues against the concept that treatment failure is solely associated with an alteration of molecular AED targets and rather points to the
involvement of other nonspecific mechanisms (Löscher and Potschka, 2002, 2005; Remy and Beck, 2006). Increasing evidence from immunohistochemical or mRNA analysis of brain tissue specimens removed during surgery of patients with pharmacoresistant epilepsy suggests that multidrug transporters, in particular P-glycoprotein (P-gp) and members of the multidrug resistance-associated proteins (MRP), are overexpressed in capillary endothelial cells and astrocytes of epileptogenic brain tissue (Tishler et al., 1995; Sisodiya et al., 1999; Dombrowski et al., 2001; Aronica et al., 2004). These active transporter proteins, which belong to the family of the ATP-binding cassette (ABC) transporters, are believed to contribute to the blood–brain barrier (BBB) by extruding a variety of lipophilic drugs from brain parenchyma including AEDs. Overexpression of P-gp and MRP in epileptogenic brain tissue might thus lower AED target site concentrations below effective levels and account for treatment refractoriness.

Due to limited access to brain tissue in vivo, only a small number of techniques is available to assess transporter function in the human brain. Results from microdialysis experiments in animal models suggest that several major AEDs (except for levetiracetam and valproic acid) are substrates of P-gp and/or MRP2 (Potschka and Löscher, 2001; Potschka et al., 2001, 2003, 2004; Baltes et al., 2006). Even though microdialysis for measurement of local brain AED concentrations in human epileptic brain tissue is feasible, ethical and methodological issues limit the use beyond experimental protocols (Rambeck et al., 2006).

An alternative approach to assess the function of multidrug transporters in the human brain in vivo is positron emission tomography (PET) with radiolabeled transporter substrates. To date, the best validated PET tracer for P-gp is the carbon-11-labeled calcium channel inhibitor $[^{11}\text{C}]$verapamil. At low (picomolar) concentrations, as given during PET experiments, verapamil has been shown to be effectively transported by P-gp at the BBB (Hendrikse et al., 1998; Sasongko et al., 2005; Syvänen et al., 2006a; Lee et al., 2006). Whereas initially developed as a racemic mixture (Elsinga et al., 1996), the use of enantiomerically pure $R-[^{11}\text{C}]$verapamil has recently been proposed for human PET studies (Lubberink et al., 2006). Even though both R- and S-verapamil are substrates for P-gp (and not for MRP), differences in metabolism and plasma protein binding of the two enantiomers suggest that an enantiomerically pure radiotracer would be preferable for the kinetic modeling of PET data (Franssen et al., 2006; Lubberink et al., 2006).

$[^{11}\text{C}]$Verapamil has been used in several human PET studies both in young and elderly healthy volunteers (Brunner et al., 2005; Sasongko et al., 2005; Toornvliet et al., 2006) and in Parkinson patients (Kortekaas et al., 2005). Regional increases in the DV of the radiotracer in patients were suggestive of impairment of the BBB.

In the present pilot study, we used $R-[^{11}\text{C}]$verapamil PET in patients with medically refractory temporal lobe epilepsy (TLE) in order to test for potential differences in P-gp activity between epileptogenic and nonepileptogenic brain regions. We hypothesized that overexpression of P-gp would lead to increased efflux and reduction of DV of the radiotracer.

Methods

The study protocol was approved by the local Ethics Committee and was performed in accordance with the Declaration of Helsinki (1964) in the revised version of 2000 (Edinburgh), the Guidelines of the International Conference of Harmonization, the Good Clinical Practice Guidelines and the Austrian drug law (Arzneimittelgesetz). All subjects were given a detailed description of the study and their written consent was obtained prior to the enrollment in the study.

Patients

We studied seven patients (two women) suffering from medically refractory TLE, who underwent presurgical evaluation at our center. Patient characteristics are shown in Table 1. The diagnosis and focus lateralization was based on clinical seizure semiology, interictal electroencephalography (EEG) abnormalities, ictal EEG findings and detailed neuropsychological assessment. Six patients had unilateral hippocampal sclerosis concordant with the side of the seizure focus and one patient had a normal MRI. All patients fulfilled criteria of medical intractability (Bourgeois, 2001). The mean age at onset of habitual seizures was 16 years (range 3–36 years), the mean duration of epilepsy before the PET examination was 30 years (range 13–51 years) and the mean age at PET examination was 46 years (range 33–54 years). All patients were genotyped for $ABCB1$ single nucleotide polymorphisms (SNPs) in exons 12 (C1236T), 21 (G2677T) and 26 (C3435T) by employing previously described procedures (Sunder-Plassmann et al., 2005) (Table 1).

PET experimental procedure

PET images were acquired with an Advance PET scanner (General Electrics Medical Systems, Wukesha, WI, U.S.A.) run in 3D mode. The transaxial resolution of this scanner is 5.5 mm full width at half-maximum (FWHM), and the axial resolution is 6.2 mm FWHM. In order to correct for tissue attenuation of photons a transmission scan of 5-min duration using two 400 MBq ^{68}Ge pin sources was recorded prior to radiotracer injection. Then, enantiomerically pure $R-[^{11}\text{C}]$verapamil (368 ± 9 MBq, 10–20 nmoles), which had been synthesized from R-norverapamil (ABX advanced biochemical compounds, Radeberg, Germany) and $[^{11}\text{C}]$methyl triflate as described.
Material blood samples (24 ml samples taken at 3.5, 5, 10, 20, 30, 40, and 60 min after radiotracer injection. Radioactivity in whole blood was determined by injecting \(-[11C\)verapamil. The fraction containing unchanged R-\([11C\)verapamil and its lipophilic radiolabeled metabolites (i.e., the \(N\)-dealkylation products \(^{11}C\)-labeled D-617 and D-717), which are known substrates for P-gp (Pauli-Magnus et al., 2000), was used to generate a partially metabolite-corrected arterial input function (Lubberink et al., 2005) into a high-performance liquid chromatography (HPLC) system. A Chromolith Perfor-

Table 1: Clinical, EEG, and ABCB1 genotype data of seven patients with refractory temporal lobe epilepsy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years/sex)</th>
<th>Age at onset of epilepsy</th>
<th>CPS/years</th>
<th>Interval last CPS to PET (days)</th>
<th>Medication (dose: mg/day)</th>
<th>Interval last medication intake to PET (h)</th>
<th>EEG (interictal)</th>
<th>EEG (ictal)</th>
<th>MRI</th>
<th>ABCB1 haplotype (exon 12–21–26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37/M</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td>LEV (1000), LTG (400)</td>
<td>11, Only few spikes RT</td>
<td>RT</td>
<td>R</td>
<td>HA</td>
<td>TTT/TTT</td>
</tr>
<tr>
<td>2</td>
<td>50/M</td>
<td>11</td>
<td>36</td>
<td>15</td>
<td>OXC (1800)</td>
<td>10, LT</td>
<td>LT</td>
<td>L</td>
<td>HA</td>
<td>TTT/TTT</td>
</tr>
<tr>
<td>3</td>
<td>54/F</td>
<td>3</td>
<td>12</td>
<td>17</td>
<td>CBZ (750)</td>
<td>11, (LEV)</td>
<td>BT</td>
<td>L</td>
<td>HA</td>
<td>TTT/TTT</td>
</tr>
<tr>
<td>4</td>
<td>52/F</td>
<td>34</td>
<td>144</td>
<td>1</td>
<td>LEV (3000), VPA (2000), OXC (2100)</td>
<td>11 (LEV), 7 (VPA)</td>
<td>RT</td>
<td>RT</td>
<td>Indep ET and RT ict.</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>33/M</td>
<td>20</td>
<td>70</td>
<td>6</td>
<td>LEV (2000), OXC (2100)</td>
<td>10 (VPA)</td>
<td>RT</td>
<td>L</td>
<td>HA</td>
<td>TTT/TTT</td>
</tr>
<tr>
<td>6</td>
<td>50/M</td>
<td>36</td>
<td>360</td>
<td>4</td>
<td>PHT (300), LTG (400)</td>
<td>4, LT</td>
<td>LT</td>
<td>L</td>
<td>HA</td>
<td>CGC/CGT</td>
</tr>
<tr>
<td>7</td>
<td>44/M</td>
<td>6</td>
<td>48</td>
<td>0</td>
<td>LEV (3000), CBZ (1200)</td>
<td>6 (LEV), 10 (CBZ)</td>
<td>RT</td>
<td>R</td>
<td>HA</td>
<td>CGC/TT</td>
</tr>
</tbody>
</table>

M, male; F, female; CPS, complex partial seizures; LEV, levetiracetam; LTG, lamotrigin; OXC, oxcarbazepine; CBZ, carbamazepine; VPA, valproic acid; PHT, phenytoin; EEG, electroencephalography; R, right; L, left; T, temporal; BT, bitemporal; HA, hippocampal atrophy; T, thymine; C, cytosine; G, guanine.

earlier (Brunner et al., 2005) and which was dissolved in 10 ml of physiological saline/ethanol (9/1, v/v), was injected as an intravenous bolus over 10 s. Radioactivity in brain was measured during 59.8 min by employing a previously described solid-phase extraction procedure (Luurtsema et al., 2005). In this assay, total plasma radioactivity was corrected for polar radiolabeled metabolites eluted with the void volume. Attenuation correction was performed using the manufacturer’s segmentation algorithm for transmission data.

PET data processing
Reconstruction of the PET data was performed by means of iterative reconstruction using the ordered subsets-expectation maximization method with 28 subsets and two iterations. The loop filter (Gaussian) was set to a full-width at half-maximum (FWHM) of 4.3 mm, and a postfiltering algorithm of 6.0 mm FWHM was applied. Attenuation correction was performed using the manufacturer’s segmentation algorithm for transmission data.

Magnetic resonance imaging preprocessing
For volume of interest (VOI) definition, we used T1-weighted magnetic resonance imaging (MRI) scans of the brain acquired within 2 years prior to PET. The MRIs were simultaneously nonuniformity corrected and segmented into tissue classes using Statistical Parametric Mapping software (SPM5, Wellcome Department of Imaging Neuroscience, UCL, London, U.K.) (Ashburner and Friston, 2005). The process also yields spatial transformation information from the native MRI space into the Montreal Neurological Institute/International Consortium for Brain Mapping standard stereotaxic space derived from 152 normal controls (MNI/ICBM152). This information...
was used to spatially transform an updated version of a frequency-based anatomical atlas in MNI/ICBM space (Hammers et al., 2003) into native MRI space. The atlas was then thresholded with the MRI’s grey matter tissue class thresholded at 50% probability.

Derivation of regional PET data

The dynamic decay-corrected PET scans were coregistered onto the T1-weighted MRIs using a normalized mutual information algorithm implemented in SPM5. For PET data analysis eight different temporal lobe VOIs (hippocampus, parahippocampal and ambient gyrus (PAHG), amygdala, medial and lateral anterior temporal lobe, lateral occipitotemporal (fusiform) gyrus, superior temporal gyrus, and middle together with inferior temporal gyrus), and one VOI in the parietal lobe (superior parietal gyrus) were outlined on MRI (Fig. 1) and sampled on the dynamic coregistered PET using Analyze AVW 7.0 software (Biomedical Imaging Resource, Mayo Foundation, Rochester, MN, U.S.A.) (Robb, 2001). In addition, the choroid plexus was drawn directly on the coregistered PET and sampled.

Kinetic modeling of R-[11C]verapamil

A 1-tissue 2-parameter (1T2K) compartment model (Fig. 2) was fitted to the time-activity data of each brain-VOI (Lubberink et al., 2006). This model assumes that...
transport and passive diffusion. The DV of its lipophilic radiolabeled metabolites from brain tissue by P-gp.

The kinetic modeling of tracer concentration in brain tissue. The 1T2K model is given by

\[\frac{dC_1(t)}{dt} = K_1 C_p(t) - k_2 C_1(t), \]

\[C_1(0) = 0 \]

\[C(t) = (1 - V_b)C_1(t) + V_b C_b(t), \]

where \(V_b \) is the vascular volume fraction of the VOI and \(C_b(t) \) is the concentration-time course of radioactivity in whole blood. \(C_b(t) \) was approximated by a constant fraction of \(C_p(t) \); the ratio \(C_b(t)/C_p(t) \) was determined by addition radioactivity measurements of arterial whole blood samples. The model equations were solved numerically using the ode15s solver of MATLAB (Mathworks, Natick, MA, U.S.A.). The kinetic parameters \(K_1, k_2 \), as well as the vascular volume fraction \(V_b \), were estimated by fitting the 1T2K model to the measured PET data \(C_{PET}(t_j) \) using the operational equation

\[\hat{C}_{PET}(t_j) = \frac{1}{t e_j - t s_j} \int_{t s_j}^{t e_j} C(t) \, dt, \]

where \(t s_j \) and \(t e_j \) denote start and end time of the \(j \)th PET time frame and \(t_j \) is its midpoint. Fits were performed by the method of weighted nonlinear least squares. In particular, the weighted residual sum of squares (WRSS),

\[WRSS = \sum_{j=1}^{n} w_j \cdot [C_{PET}(t_j) - \hat{C}_{PET}(t_j)]^2, \]

was minimized using the lsqnonlin function of the Optimization Toolbox of MATLAB, where \(n \) is the number of observed time-activity data points per VOI in each patient. The weighting factor \(w_j \) was set to (Bertoldo et al., 2001)

\[w_j = \frac{t e_j - t s_j}{\hat{C}_{PET}(t_j)}, \]

where \(\hat{C}_{PET}(t_j) \) are PET data not corrected for radioactive decay. Goodness-of-fit was assessed by visual inspection of observed and predicted TAC concentrations versus time, by the correlation between observed and predicted concentrations, by the randomness of the residuals (runs test), and by estimating parameter uncertainties (variances) from the inverse \(\mathbf{M}^{-1} \) of the Fisher information matrix (Cobelli et al., 2000):

\[\text{cov}(\mathbf{p}) = \frac{\text{WRSS}(\mathbf{p})}{n - m} \cdot \mathbf{M}^{-1}, \]

where \(\mathbf{p} \) is the vector of the \(m \) model parameters at the minimum of WRSS and where the variances of the parameter estimates are the diagonal elements of the covariance matrix \(\text{cov}(\mathbf{p}) \).

In addition, in order to obtain a model-independent estimate of the DV, Logan graphical analysis (Logan et al., 1990) was applied to the PET and partially metabolite-corrected arterial plasma data using MATLAB. The slope \(DV \) of the linear part of the Logan plot was estimated by linear regression of the Logan variables. The linear regression was assessed by the magnitude of the squared linear correlation coefficient (\(r^2 \)).

Statistical analysis

Ipsilateral and contralateral model parameters (\(K_1, k_2, DV \)) in individual homologous brain VOIs were compared using the Wilcoxon matched pairs test employing commercially available software (STATISTICA Release 5.1, StatSoft, Inc., Tulsa, OK, U.S.A.), p-values <0.05.

FIG. 2. Diagram of the 1-tissue 2-parameter (1T2K) compartment model used for the kinetic modeling of \(R\)-[11C]verapamil PET data. \(C_p(t) \) is the input function; \(C_1(t) \) denotes the radioactivity concentration in brain tissue. \(K_1 (\text{ml/min}) \) and \(k_2 (\text{per min}) \) are first-order rate constants. \(K_1 \) describes the influx of \(R\)-[11C]verapamil and its lipophilic radiolabeled metabolites from plasma into brain tissue, whereas \(k_2 \) characterizes efflux of \(R\)-[11C]verapamil and its lipophilic radiolabeled metabolites from brain tissue by P-gp transport and passive diffusion. The DV of \(R\)-[11C]verapamil and its lipophilic radiolabeled metabolites, which are also P-gp substrates, behave in a similar fashion and that their transport across the BBB can be described by simple linear (first-order) kinetics, that compartments are of homogeneous composition, and that the measured arterial plasma radioactivity concentrations can be used to approximate capillary concentrations within the respective VOIs. The 1T2K model is given by

\[\frac{dC_1(t)}{dt} = K_1 C_p(t) - k_2 C_1(t), \]

\[C_1(0) = 0 \]

\[C(t) = (1 - V_b)C_1(t) + V_b C_b(t), \]

where \(V_b \) is the vascular volume fraction of the VOI and \(C_b(t) \) is the concentration-time course of radioactivity in whole blood. \(C_b(t) \) was approximated by a constant fraction of \(C_p(t) \); the ratio \(C_b(t)/C_p(t) \) was determined by addition radioactivity measurements of arterial whole blood samples. The model equations were solved numerically using the ode15s solver of MATLAB (Mathworks, Natick, MA, U.S.A.). The kinetic parameters \(K_1, k_2 \), as well as the vascular volume fraction \(V_b \), were estimated by fitting the 1T2K model to the measured PET data \(C_{PET}(t_j) \) using the operational equation

\[\hat{C}_{PET}(t_j) = \frac{1}{t e_j - t s_j} \int_{t s_j}^{t e_j} C(t) \, dt, \]

where \(t s_j \) and \(t e_j \) denote start and end time of the \(j \)th PET time frame and \(t_j \) is its midpoint. Fits were performed by the method of weighted nonlinear least squares. In particular, the weighted residual sum of squares (WRSS),

\[WRSS = \sum_{j=1}^{n} w_j \cdot [C_{PET}(t_j) - \hat{C}_{PET}(t_j)]^2, \]

was minimized using the lsqnonlin function of the Optimization Toolbox of MATLAB, where \(n \) is the number of observed time-activity data points per VOI in each patient. The weighting factor \(w_j \) was set to (Bertoldo et al., 2001)

\[w_j = \frac{t e_j - t s_j}{\hat{C}_{PET}(t_j)}, \]

where \(\hat{C}_{PET}(t_j) \) are PET data not corrected for radioactive decay. Goodness-of-fit was assessed by visual inspection of observed and predicted TAC concentrations versus time, by the correlation between observed and predicted concentrations, by the randomness of the residuals (runs test), and by estimating parameter uncertainties (variances) from the inverse \(\mathbf{M}^{-1} \) of the Fisher information matrix (Cobelli et al., 2000):

\[\text{cov}(\mathbf{p}) = \frac{\text{WRSS}(\mathbf{p})}{n - m} \cdot \mathbf{M}^{-1}, \]

where \(\mathbf{p} \) is the vector of the \(m \) model parameters at the minimum of WRSS and where the variances of the parameter estimates are the diagonal elements of the covariance matrix \(\text{cov}(\mathbf{p}) \).

In addition, in order to obtain a model-independent estimate of the DV, Logan graphical analysis (Logan et al., 1990) was applied to the PET and partially metabolite-corrected arterial plasma data using MATLAB. The slope \(DV \) of the linear part of the Logan plot was estimated by linear regression of the Logan variables. The linear regression was assessed by the magnitude of the squared linear correlation coefficient (\(r^2 \)).

Statistical analysis

Ipsilateral and contralateral model parameters (\(K_1, k_2, DV \)) in individual homologous brain VOIs were compared using the Wilcoxon matched pairs test employing commercially available software (STATISTICA Release 5.1, StatSoft, Inc., Tulsa, OK, U.S.A.), p-values <0.05.
were considered significant. Ipsilateral versus contralateral parameter asymmetries (K₁, k₂, DV) were calculated as \((100/\text{contralateral}) \times \text{ipsilateral}-100\).

RESULTS

We scanned seven patients with drug-resistant unilateral TLE. The overall brain tissue uptake of \(R-[^{11}C]\)verapamil was low in contrast to the high radioactivity concentrations in the choroid plexus (Fig. 1). Radioactivity signal in hippocampus was contaminated by spill-in of radioactivity from the adjacent choroid plexus, so that this region could not be reliably used for further data analysis. The other temporal lobe regions, including parahippocampal and ambient gyrus (PAHG) and amygdala, appeared not to be affected by this artifact (Fig. 1).

Table 2 summarizes the influx rate constants K₁, the efflux rate constants k₂, and the DV of \(R-[^{11}C]\)verapamil in different homologous brain VOIs located ipsilateral and contralateral to the seizure focus. The mean interpatient coefficients of variation (CV) across all homologous brain VOIs were 10 ± 1% for K₁, 13 ± 3% for k₂ and 8 ± 3% for DV. Compartmental model-derived DV values were in good agreement with DVs estimated by Logan graphical analysis (data not shown). As compared to the other brain VOIs, K₁ and DV values were about twofold higher in the choroid plexus; the contaminated hippocampal VOIs accordingly showed intermediate values (Table 2). In contrast to choroid plexus, radioactivity concentrations were in the ventricle system considerably lower than those in brain tissue (Fig. 1).

Fig. 3 shows K₁, k₂, and DV asymmetries in different temporal and one extratemporal lobe VOI (superior parietal gyrus) expressed as percent difference between the ipsilateral versus the contralateral brain hemisphere. As compared to superior parietal gyrus, there were considerable K₁ and k₂ asymmetries for PAHG, amygdala, medial and lateral anterior temporal lobe and lateral occipitotemporal gyrus (Fig. 3A and 3B). The mean ipsilateral-to-contralateral differences in K₁ were +6.8% (range: −3.8% to +22.3%) for PAHG, +6.8% (range: −20.6% to +31.3%) for amygdala, +5.6% (range: −8.3% to +14.5%) for medial anterior temporal lobe, −2.1% (range: −20.7% to +16.8%) for lateral anterior temporal lobe, +2.5% (range: −5.9% to +12.1%) for lateral occipitotemporal gyrus and +0.9% (range: −3.7% to +4.5%) for superior parietal gyrus. For k₂, these differences were +10.0% (range: −2.3% to +43.9%) for PAHG, +8.7% (range: −18.0% to +38.9%) for amygdala, +8.4% (range: −14.5% to +31.0%) for medial anterior temporal lobe, +3.6% (range: −24.4% to +22.6%) for lateral anterior temporal lobe, +2.4% (range: −23.0% to +29.6%) for lateral occipitotemporal gyrus and +2.0% (range: −4.2% to +5.8%) for superior parietal gyrus.

In several cases, k₂ increases were more pronounced than K₁ increases resulting in ipsilateral decreased DVs of \(R-[^{11}C]\)verapamil (Fig. 3C). In five of seven patients (i.e., patient 2, 3, 5, 6, and 7) there were prominent (10%–26%) ipsilateral reductions of DV in diverse temporal lobe regions. Fig. 4 shows time-activity curves of \(R-[^{11}C]\)verapamil in ipsi- and contralateral anterior temporal lobe of patient 2 and PAHG of patient 5. For none of the examined brain regions, any of the differences in K₁, k₂, and DV between the epileptogenic and the nonepileptogenic hemisphere reached statistical significance (p > 0.05, Wilcoxon matched pairs test). For PAHG, however, statistical comparison of ipsilateral and contralateral k₂ values gave a considerably lower p-value (p = 0.091) than for the other brain VOIs (p > 0.3).

In Table 3, the mean percentages of \(R-[^{11}C]\)verapamil and its radiolabeled metabolites in arterial plasma at different time points after tracer injection are summarized. At 60 min after injection, unchanged \(R-[^{11}C]\)verapamil represented 25.0 ± 6.3% of total radioactivity. The remainder of radioactivity was composed to about equal parts of lipophilic and polar radiolabeled metabolites of \(R-[^{11}C]\)verapamil.

All study participants were genotyped for ABCB1 SNPs in exons 12 (C1236T), 21 (G2677T) and 26 (C3435T). The individual haplotypes are shown in Table 1. Mean k₂ values across all brain VOIs were 0.0348 ± 0.004 min⁻¹ for patient 6, a homozygous carrier of the CGC haplotype (CGC/CGC), and 0.0324 ± 0.004 min⁻¹ for patient 1 and 0.0341 ± 0.004 min⁻¹ for patient 5, who had both homozygous mutant haplotypes (TTT/TTT). Because of the low number of subjects in each group no statistical test was performed.

DISCUSSION

In the present pilot study, the radiolabeled model P-gp substrate \(R-[^{11}C]\)verapamil and PET was used to assess P-gp functionality in the brains of patients with TLE, a form of focal epilepsy, which is often refractory to medical treatment. We analyzed different temporal lobe VOIs including hippocampus, parahippocampal, and ambient gyrus (PAHG) and amygdala, which are regions that are involved in seizure generation. Unfortunately, the most interesting epileptogenic brain region, i.e., hippocampus, could not be analyzed due to spill-in of radioactivity from the adjacent choroid plexus (Fig. 1). The high choroid plexus signal of \(R-[^{11}C]\)verapamil may be related to the expression of P-gp in the epithelium of the choroid plexus, resulting in active transport of P-gp substrates such as verapamil from blood into cerebral spinal fluid (Rao et al., 1999).

Model parameters from the side ipsilateral to the seizure focus were compared with respective parameters from the contralateral brain hemisphere in homologous VOIs (Fig. 3). In several temporal lobe VOIs that are adjacent to
TABLE 2. Kinetic rate constants (K_1, k_2) and distribution volumes (DVs) of R-[11C]verapamil in seven representative brain VOIs located ipsilateral and contralateral to the seizure focus and in choroid plexus. The estimated coefficient of variation in percent for each parameter is given in parentheses (see Methods section for further details).

<table>
<thead>
<tr>
<th>Patient</th>
<th>K_1 (ml·min⁻¹·ml⁻¹) × 10⁻²</th>
<th>k_2 (min⁻¹) × 10⁻²</th>
<th>DV (ml·ml⁻¹)</th>
<th>K_1 (ml·min⁻¹·ml⁻¹) × 10⁻²</th>
<th>k_2 (min⁻¹) × 10⁻²</th>
<th>DV (ml·ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampusa</td>
<td>1 3.75 (3.2)/4.46 (7.4)</td>
<td>3.83 (4.5)/4.37 (7.6)</td>
<td>0.98 (2.0)/1.02 (2.0)</td>
<td>2.58 (4.5)/2.16 (3.3)</td>
<td>3.47 (6.2)/3.04 (5.1)</td>
<td>0.74 (2.4)/0.71 (2.3)</td>
</tr>
<tr>
<td>Parahippocampal gyrus</td>
<td>2 5.03 (5.7)/4.29 (4.5)</td>
<td>4.76 (6.2)/4.81 (5.0)</td>
<td>1.06 (1.9)/0.89 (1.3)</td>
<td>3.40 (6.1)/3.28 (6.5)</td>
<td>5.01 (6.6)/4.59 (7.3)</td>
<td>0.68 (1.6)/0.72 (1.7)</td>
</tr>
<tr>
<td>Amygdala</td>
<td>3 5.04 (2.7)/6.09 (2.3)</td>
<td>3.45 (3.6)/4.13 (2.7)</td>
<td>0.95 (1.5)/1.47 (1.0)</td>
<td>3.75 (2.6)/3.90 (3.2)</td>
<td>3.60 (3.8)/3.59 (5.0)</td>
<td>1.04 (1.4)/0.99 (2.5)</td>
</tr>
<tr>
<td>Medial anterior temporal lobe</td>
<td>4 5.63 (2.3)/6.02 (3.3)</td>
<td>3.71 (3.0)/5.54 (4.0)</td>
<td>1.52 (1.2)/1.70 (1.4)</td>
<td>3.77 (3.9)/3.77 (3.1)</td>
<td>3.77 (6.1)/3.86 (4.9)</td>
<td>1.00 (3.0)/0.98 (2.4)</td>
</tr>
<tr>
<td>Lateral anterior temporal lobe</td>
<td>5 6.61 (3.0)/5.40 (5.1)</td>
<td>5.19 (3.4)/5.91 (5.8)</td>
<td>1.27 (1.2)/1.38 (1.9)</td>
<td>4.00 (3.9)/3.27 (4.6)</td>
<td>4.00 (4.9)/2.78 (7.7)</td>
<td>1.00 (1.8)/1.18 (3.6)</td>
</tr>
<tr>
<td>Lateral occipitotemporal gyrus</td>
<td>6 5.45 (4.3)/4.33 (2.3)</td>
<td>4.65 (4.7)/4.43 (2.9)</td>
<td>1.17 (1.5)/0.98 (1.1)</td>
<td>2.86 (2.5)/2.72 (2.5)</td>
<td>3.47 (3.5)/3.42 (3.5)</td>
<td>0.82 (1.2)/0.80 (1.4)</td>
</tr>
<tr>
<td>Superior parietal gyrus</td>
<td>7 5.01 (4.6)/4.22 (5.0)</td>
<td>4.09 (4.9)/5.07 (7.2)</td>
<td>1.23 (1.8)/1.38 (3.0)</td>
<td>2.86 (3.3)/2.83 (3.0)</td>
<td>2.46 (6.4)/2.38 (6.3)</td>
<td>1.16 (3.7)/1.19 (3.6)</td>
</tr>
</tbody>
</table>

*aHippocampus signal was contaminated by spill-in from choroid plexus and values are just shown for illustrative purposes.

*bChoroid plexus was manually defined.
FIG. 3. Scatter plots showing percent ipsilateral vs. contralateral asymmetries for the influx rate constant K_1 (A), the efflux rate constant k_2 (B) and the DV (i.e., K_1/k_2) (C) of R-[11C]verapamil in five different temporal lobe VOIs and the extratemporal control VOI (superior parietal gyrus) in seven patients with TLE. PAHG, parahippocampal and ambient gyrus; med, medial; ant, anterior; TL, temporal lobe; lat, lateral; occipitotemp, occipitotemporal; G, gyrus; sup, superior; pariet, parietal.

FIG. 4. R-[11C]verapamil time-activity curves and fits obtained from the 1-tissue 2-parameter compartment model in ipsi- and contralateral lateral anterior temporal lobe of patient 2 (A) and parahippocampal and ambient gyrus (PAHG) of patient 5 (B). Note that the y-axis is in a logarithmic scale. The ipsilateral distribution volumes were reduced by 26% for patient 2 and by 15% for patient 5.
TABLE 3. \([11C] \)verapamil and its radiolabeled metabolites in arterial plasma (% of total radioactivity, mean \(\pm \) standard deviation) at different time points after intravenous injection of \([11C] \)verapamil into seven patients with refractory temporal lobe epilepsy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 (\pm) 0.0(^a)</td>
<td>97.3 (\pm) 2.1</td>
<td>–</td>
<td>2.7 (\pm) 2.1</td>
</tr>
<tr>
<td>5.1 (\pm) 0.1(^a)</td>
<td>91.7 (\pm) 5.2</td>
<td>14.6 (\pm) 7.7</td>
<td>8.3 (\pm) 5.2</td>
</tr>
<tr>
<td>10.3 (\pm) 0.4</td>
<td>69.2 (\pm) 13.1</td>
<td>22.9 (\pm) 4.3</td>
<td>15.1 (\pm) 5.8</td>
</tr>
<tr>
<td>20.1 (\pm) 0.0</td>
<td>51.5 (\pm) 11.0</td>
<td>25.6 (\pm) 7.1</td>
<td></td>
</tr>
<tr>
<td>30.3 (\pm) 0.6</td>
<td>40.6 (\pm) 7.6</td>
<td>31.5 (\pm) 3.3</td>
<td>27.9 (\pm) 3.0</td>
</tr>
<tr>
<td>40.3 (\pm) 0.1</td>
<td>37.8 (\pm) 10.6</td>
<td>32.2 (\pm) 6.1</td>
<td>30.0 (\pm) 7.6</td>
</tr>
<tr>
<td>60.3 (\pm) 0.1</td>
<td>25.0 (\pm) 6.3</td>
<td>35.9 (\pm) 3.8</td>
<td>39.0 (\pm) 7.9</td>
</tr>
</tbody>
</table>

\(^a\)For the first two time points no HPLC was performed and the \([11C] \)verapamil fraction therefore also includes lipophilic \([11C] \)metabolites.

increases, which resulted in ipsilateral decreased DVs of \([11C] \)verapamil (Figs. 3C, 4). These differences did not reach statistical significance in the group, which might be explained by the fact that the observed effects were variable and not restricted to a single brain VOI but rather spread over different temporal lobe VOIs. Despite the lack of statistical significance, our findings are intriguing as they point to enhanced P-gp activity in epileptic brain regions, even though it cannot be excluded that similar parameter asymmetries would be present in temporal lobe regions of drug-resistant patients. Ipsilateral versus contralateral DV asymmetries were heterogeneous, with 10%–26% ipsilateral DV reductions observed in some regions for five of seven patients while only moderate DV reductions or even moderate DV increases were seen in other regions. It is tempting to speculate that the heterogeneity of the data reflects different levels of temporal lobe P-gp activity in different individuals. Our data are in line with the concept that the mechanisms of pharmacoresistance are multifactorial and that P-gp-mediated efflux is only in some refractory patients a descriptor of multidrug resistance (Löschler, 2005). In contrast to temporal lobe VOIs, parameter asymmetries were minimal in a brain region located outside the temporal lobe (superior parietal gyrus, Fig. 3), which supports the notion that the observed asymmetries were indeed unique to epileptic brain regions. In addition, earlier data acquired with racemic \([11C] \)verapamil in healthy volunteers had shown no comparable side-to-side differences in regional \([11C] \)verapamil brain tissue concentrations and efflux (Brunner et al., 2005).

A surprising finding of this study is the ipsilaterally increased influx rate constants \(K_1 \) of \([11C] \)verapamil in several temporal lobe VOIs (Fig. 3A). It has recently been suggested that not only \(k_2 \) but also \(K_1 \) of \([11C] \)verapamil should be affected by P-gp function, in that increased P-gp activity leads to decreased substrate influx \(K_1 \) (influx hindrance) (Ikoma et al., 2006; Sasonko et al., 2005). The ipsilateral \(K_1 \) increases observed in this study might be related to regionally enhanced blood flow and/or tissue extraction of \([11C] \)verapamil and might have masked possible \(K_1 \) decreases caused by the “gatekeeper” function of P-gp (Siarheyeva et al., 2006; Syvänen et al., 2006b).

An important issue that has to be considered in this study is the fact that all our patients were being treated with AEDs. Even though it is at present not entirely clear which AEDs are transported to what extent by P-gp in humans (Owen et al., 2001; Potschka et al., 2001), it can be expected that in at least some of the patients of this study the antiepileptic medication might have competed with \([11C] \)verapamil for P-gp transport, which could have accounted for the variable and in some cases modest DV decreases of \([11C] \)verapamil in epileptic brain tissue. In order to address the issue of possible P-gp occupancy by AEDs in the future, repeated \([11C] \)verapamil PET scans in patients during AED treatment and during treatment discontinuation (e.g., during epilepsy monitoring) would be highly interesting.

Polymorphisms in the \(ABCB1 \) gene might have contributed to the observed interpatient variability of our PET data as these have been associated with changes in P-gp expression and function (Hoffmeyer et al., 2000). A recent study has found an association of the \(ABCB1 \) exon 26 C3435T polymorphism with multidrug resistance in epilepsy patients (Siddiqui et al., 2003). In another study a correlation has been found between \(ABCB1 \) SNPs in exons 12 (C1236T), 21 (G2677T) and 26 (C3435T) and drug resistance in patients with TLE, with an increased risk of drug resistance for homozygous carriers of the CGC haplotype (1236C, 2677G, 3435C) (Zimpich et al., 2004). Other studies, however, have failed to replicate these findings (Sills et al., 2005; Tan et al., 2004). In the present study all study participants were genotyped for \(ABCB1 \) SNPs in exons 12, 21 and 26 (Table 1). According to the present pilot data from a small sample size of epilepsy patients no apparent relationship between the \(ABCB1 \) genotype and the \(R-[11C] \)verapamil efflux rate constant \(k_2 \) could be described. However, more studies in larger groups of epilepsy patients are needed to determine the true impact of \(ABCB1 \) haplotypes on P-gp function at the BBB.

In summary, despite the lack of statistical significance it cannot be excluded from our pilot data that regionally enhanced P-gp activity might be involved in drug resistance in at least some of the patients included in this study. These findings might have important therapeutic implications as they support the development of P-gp inhibitors as antiepileptic comedication (Sisodiya and Bates, 2006). Several new third-generation P-gp inhibitors, such as tariquidar (XR-9576), are currently in clinical development (Szakacs et al., 2006). Initially developed to overcome multidrug resistance in oncology, none of these substances has been tested in clinical trials in epilepsy...
patients (Bates et al., 2002; Sisodiya and Bates, 2006). In future clinical trials with P-gp modulators, PET scans using R-[11C]verapamil might be useful to identify patients with pronounced cerebral P-gp activity, which would most likely benefit from P-gp modulation. Our data, however, indicate that TLE is probably not the best suited epilepsy form for PET studies with R-[11C]verapamil due to pronounced volume effects in the hippocampus. Other patient groups, such as patients with focal cortical dysplasia, may possibly be better suited for direct analysis of epileptogenic brain regions to further elucidate the role of P-gp in treatment-refractory epilepsy.

Acknowledgments: This study could not have been completed without the excellent technical support of Rainer Bartosch and Ingrid Leitinger from the Department of Nuclear Medicine, and research nurse Edith Lackner from the Department of Clinical Pharmacology, David Elmenhorst (Research Centre Jülich, Germany) is gratefully acknowledged for help and advice with arterial blood sampling. We further wish to thank Mark Lubberink and Adrian Lammertsma from the VU University Medical Center (Amsterdam, The Netherlands) for help with setting up the R-[11C]verapamil PET procedure in our laboratory, Federico Türkheimer from the MRC Clinical Sciences Centre and Division of Neuroscience, and Marie-Claude Asselin, Rainer Hinz and Julian Matthews from the Wolfson Molecular Imaging Centre (Manchester, United Kingdom), and Friederike Neumann from the Department of Medical Computer Sciences gave very valuable advice regarding PET data.

REFERENCES

O. LANGER ET AL.

Epilepsia, Vol. 48, No. 9, 2007