Association between pathology and texture features of multi parametric MRI of the prostate

1,2Peter Kuess, 3D. Nilsson, 1,2P. Andrzejewski, 2,4P. Georg, 1J. Knoth, 5M. Susani, 3J. Trygg, 2,6T. Helbich, 1,2D. Georg, 7T. Nyholm

1Department of Radiation Oncology / Medical University Vienna & AKH Wien
2Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology
3Computational Life Science Cluster (CliC), Department of Chemistry, Umea University
4EBG MedAustron GmbH, Wiener Neustadt (Austria)
5Clinical Institute of Pathology, Medical University of Vienna
2,6Department of biomedical Imaging and Image-guided Therapy, Medical University of Vienna
7Department of Radiation Sciences, Radiation Physics, Umea University
Acknowledgements

The financial support by the Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Umeå: Tufve Nyholm, David Nilsson, Patrik Brynolfsson

Visit http://www.meduniwien.ac.at/hp/radonc/
Motivation

- Finding a correlation between imaging parameters (textures) derived from mpMRI and pathological verified tumor occurrence in the prostate
- Investigation of orthogonal partial least squares (OPLS) modelling approaches and the predictive power of parameter combinations
- Long-term goal: Usage of tumor prediction models as assistance during tumor delineation / diagnostic
Material & Methods: Dataset

- 25 Patient Data sets
 - T2 \((a)\)
 - DCE (70 timepoints)
 - DCE: 0s, 79s, 300s \((b-d)\)
 - AUC \((e)\)
 - kTrans \((f)\)
 - DWI (ADC map measured based on 4 b-values) \((g)\)
 - Pathology information after prostatectomy \((h)\)
 - Slice thickness 3-4 mm
Material & Methods: Delineation

- Registration of pathological slices and MR images is challenging
- Central Gland and Peripheral Zone were delineated on T2
- Based on histological information, Tumor was delineated by visual comparison and propagated to all image modalities
- In addition, geometrical substructures (PIRADS) were used and scored in accordance to pathological information (4 distinct scoring levels)
 - 6 substructures in CG and 16 substructures in PZ
Material & Methods: Delineation

- Registration of pathological slices and MR images is challenging
- Central Gland and Peripheral Zone were delineated on T2
- Based on histological information Tumor was delineated by visual comparison and propagated to all image modalities
- In addition geometrical substructures (PIRADS) were used and scored in accordance to pathological (4 distinct scoring levels)
 - 6 substructures in CG and 16 substructures in PZ

- PIRADS Structure 10p:
 - Score: 0.75 / 1
Material & Methods: Delineation

• In 24/25 cases the situation was more complex
Material & Methods: Workflow

T2

DCE 3 Timepoints

kTrans

AUC

Delineation

ADC

Extract Structures

Gray-level co-occurrence Matrices

GLCM (BinSize=8,16,32)

Calculate textual parameters

Tumor

Tumor-free

Data Matrix

X

Multivariate Image Analysis

PCA OPLS
Material & Methods: Workflow

Material & Methods: Workflow

- **Delineation**
 - T2
 - DCE
 - kTrans
 - AUC

- **Extract Structures**
 - Tumor
 - Tumor-free

- **Gray-level co-occurrence Matrices (GLCM)**
 - BinSize = 8, 16, 32

- **Calculate textual parameters**

- **Data Matrix**

- **Multivariate Image Analysis**
 - PCA
 - OPLS

11 Histogramm based parameters per image modality
Evaluation Parameters

- Textual Parameters
 - Autocorrelation, Cluster Prominence, Cluster Shade, Maximum Probability, Energy, Sum of Squares Variance, Sum Variance, Sum Entropy

- Gray-level co-occurrence matrixes (GLCM)
 - Bin Size (N=8,16 and 32)
 - 4 Orientations

- Histogram based parameters
 - Min, Max, 2%, 15%...85%, 98%, mean, median, standard deviation, skewness, kurtosis
Orthogonal partial least squares (OPLS) Modeling

• OPLS is a multivariate regression technique

• \(X \) data matrix:
 \(\rightarrow \) textures and histogram-based parameters of image modalities

• \(y \): response representing histological information

• OPLS removes variations in \(X, T_0P_0 \), that is orthogonal to response

• **Quality of Model:**
 \(\rightarrow R^2Y: \) goodness of model itself [0-1]
 \(\rightarrow Q^2Y: \) explaining the cross-correlation [0-1]

\[
X = \bar{x}' + tp' + T_0P_0 + E
\]
\[
y = \bar{y}' + tq' + F
\]
Preliminary Results: PCA on PIRADS structures

- Histograms of Score projections of ADC
 - Blue bars = distribution of tumor free PIRADS structures
 - Orange bars = PIRADS structures with tumor occurrence

![Histograms and ROC curves for different histoscores](image-url)
Preliminary Results: PIRADS using PCA

- Histograms of Score projections of ADC
 - Blue bars = distribution of tumor free PIRADS structures
 - Orange bars = PIRADS structures with tumor occurrence
Preliminary Results: OPLS modeling

<table>
<thead>
<tr>
<th>Imaging</th>
<th>Parameters</th>
<th>Q2Y</th>
<th>R2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Txt</td>
<td>0.491</td>
<td>0.544</td>
</tr>
<tr>
<td>ADC</td>
<td>Hist</td>
<td>0.624</td>
<td>0.643</td>
</tr>
<tr>
<td>ADC</td>
<td>Txt+Hist</td>
<td>0.660</td>
<td>0.713</td>
</tr>
<tr>
<td>DCE (79s)</td>
<td>Txt</td>
<td>0.432</td>
<td>0.529</td>
</tr>
<tr>
<td>DCE (79s)</td>
<td>Hist</td>
<td>0.194</td>
<td>0.230</td>
</tr>
<tr>
<td>DCE (79s)</td>
<td>Txt+Hist</td>
<td>0.454</td>
<td>0.550</td>
</tr>
<tr>
<td>T2</td>
<td>Txt</td>
<td>0.380</td>
<td>0.435</td>
</tr>
<tr>
<td>T2</td>
<td>Hist</td>
<td>0.402</td>
<td>0.454</td>
</tr>
<tr>
<td>T2</td>
<td>Txt+Hist</td>
<td>0.489</td>
<td>0.554</td>
</tr>
<tr>
<td>kTrans</td>
<td>Txt</td>
<td>0.282</td>
<td>0.351</td>
</tr>
<tr>
<td>kTrans</td>
<td>Hist</td>
<td>0.191</td>
<td>0.243</td>
</tr>
<tr>
<td>kTrans</td>
<td>Txt+Hist</td>
<td>0.375</td>
<td>0.466</td>
</tr>
</tbody>
</table>

OPLS Model including textual and histogram-based parameters for ADC

- **Blue dots** = tumor structures
- **Red dots** = tumor free structures
OPLS Modeling

- Histogram based parameters
- Textual Parameters
- Combined: Hist & Txt

- Q² values for different parameters:
 - ADC
 - T2
 - DCE (79s)
 - AUC
 - kTrans
 - DCE (0s)
 - DCE (300s)
OPLS Modeling
OPLS Modeling

Benefit from using all mpMRI image methods available

- R2Y
- Q2Y
- Linear (R2Y)
- Linear (Q2Y)
OPLS Modeling

Benefit from using all mpMRI image methods available

- R2Y
- Q2Y
- Linear (R2Y)
- Linear (Q2Y)
Conclusion

- Textual parameters proved to be an additional supplement to histogram-based parameters in mpMRI analysis
- Tumor prediction using OPLS shows encouraging results
- Best prediction value obtained were based on ADC
- PIRADS classification for tumor prediction is promising
 - But structure size is too large
 - Next step: voxel-based GLCM

Thanks for your attention!
Additonal Slides:
Background: DIL boosting study

Andrzejewski et al 2015 Rad Oncol – in press

- **Material and Methods:** DILs were defined based on multiparametric magnetic resonance imaging and fused with planning computed tomography images for twelve patients. VMAT, IMPT and HDR-BT treatment plans were created for each patient with the $\text{EQD}_{2\alpha/\beta}^2$ dose to the DIL escalated up to 111.6 Gy, $\text{PTV}_{\text{initial}} \ D_{\text{pres}} = 80.9$ Gy (EBRT) and $\text{CTV} \ D_{90\%} = 81.9$ Gy (HDR-BT). Hard dose constraints were applied to spare the OARs. Treatment plans were evaluated and compared between used techniques in CERR software.

- **Results:** Higher boost doses were achieved with IMPT compared to VMAT, keeping major OARs doses at similar level. HDR-BT was superior both in terms of OARs sparing and DIL boosting.
Outlook: Voxel-based GLCM

- Local texture around every voxel is analyzed
- A GLCM is generated for all voxels in image
- Data is assembled as X and subjected to multivariate methods
- Score values can be "refolded" to original image dimensions for visualization

Example from glioma data set
Outlook: Local Binary Patterns

- Analyzes the texture around a voxel
- Surrounded voxels are thresholded, which gives 0s and 1s
- Put together, these form a pattern, which is a binary number
- The LBP is the numerical number
- All LBPs from a ROI can be binned in a histogram, so the frequency of each pattern can be accessed
- The histograms can be subjected to multivariate data analysis

\[
\begin{align*}
\text{example} & \quad 6 & 5 & 2 \\
& \quad 7 & 6 & 1 \\
& \quad 9 & 8 & 7 \\
\text{thresholded} & \quad 1 & 0 & 0 \\
& \quad 1 & 1 & 1 \\
& \quad 128 & 8 & 8 \\
\text{weights} & \quad 1 & 2 & 4 \\
& \quad 64 & 32 & 16
\end{align*}
\]

LBP = 1 + 16 + 32 + 64 + 128 = 241
\[
C = \frac{(6+7+8+9+7)}{5} - \frac{(5+2+1)}{3} = 4.7
Multi parametric MR Images

ADC

T2

kTrans

PET

Histoscore:
Substructure 8p: 0.75
Sensitivity and Specificity of OPLS
Sensitivity and Specificity of OPLS

Image of a graph showing the sensitivity and specificity for different combinations of T2 and additional parameters.
Textual descriptors

- All:
 - autocorrelation, Cluster prominence, cluster shade, contrast, correlation, difference entropy, dissimilarity, energy, entropy, homogeneity 1 (as described by Soh et al.), homogeneity 2 (as implemented in MatLab 2014a, Image Processing Toolbox v. 9.0), information measure of correlations 1 and 2, inverse difference moment, normalized inverse difference moment, maximum probability, sum average, sum entropy, sum of squares, variance, sum variance

- Not included due to size dependency:
 - contrast, correlation, difference entropy, difference variance, dissimilarity, energy, entropy, homogeneity, inverse difference, information measures of correlation 1 and 2.

- Finally used textual parameters:
 - Autocorrelation, Cluster Prominence, Cluster Shade, Maximum Probability, Energy, Sum of Squares Variance, Sum Variance, Sum Entropy
Loading Plot – Size dependency of textual parameters

prostate_opls_model.M3 (OPLS)
Normalized to unit length
Colored according to model terms

\[R2X[1] = 0.447 \quad R2Xo[1] = 0.183 \]

AutoCorrelation
- Healthy
- PIRADS-TumorScored(0.25-1)
- TumorOnly

Contrast.matlab
- Healthy
- PIRADS-TumorScored(0.25-1)
- TumorOnly
Zonal Segmentation

PCA Model - Scatter 2D (T)
N8_ADC

Peripheral
- 0.0
- 1.0

t[2] (26.4%)
t[1] (54.8%)