Anesthesia in experimental animal surgery

U. Windberger, DVM, BSc
Department Biomedical Research
MedUni Wien
Basically:

- Sedation
- Analgesia
- Relaxation
Basically:

- Volatile Anesthetics
- TIVA
- Combinations
What else?

- Artificial ventilation (O₂ vs. CO₂)
- Intravenous infusion regime
- Acid-base balance
- Temperature (not > Δ1°C)
- Hemodynamics
Ventilation

- **Supporting spontaneous breath:**
 - CPAP/PEEP (FRC increased)
 - SIMV (Seufzer)

- **Substituting spontaneous breath:**
 - Controlled ventilation
 - Volume controlled
 - Pressure controlled
 - High Frequency Ventilation, HFV (ARDS, at high CO₂)

- **Mixed forms of ventilation**
 - Biphasic positive airway pressure, BIPAP
Fluid balance (1)

<table>
<thead>
<tr>
<th>Fluid input</th>
<th>Fluid output</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Ringer’s solution, saline</td>
<td>- Urine</td>
</tr>
<tr>
<td>- HES, Dextrane</td>
<td>- Bleeding</td>
</tr>
<tr>
<td>- Blood transfusion</td>
<td>- Drain</td>
</tr>
<tr>
<td>- Diverse short infusions</td>
<td>- Blood samples</td>
</tr>
</tbody>
</table>

- Breathing
- Saliva (ruminants)
Fluid balance (2)

Basis: 10 mL/kg/h Ringer’s lactate + potassium, starting with 15 mL/kg/h

Restoration of volume (slowly), Dextran, Hämaccel, HES

warmed
Blood

- Slowly, warmed blood, catheter with big lumen (not via venflon)
- (20 mval Ca++ per 500 mL blood!!)
 - Autologous whole blood, max 3 weeks, coll storage (post transfusion lung, hepatitis)
 - Autologous blood from Cell-Saver
 - Homologous blood (twins, sheep, rodents, rabbits)
 - Frozen autologous plasma
 - Humane albumine

- Transfusion reaction: treatment
 - Volume
 - Oxygen, controlled ventilation
 - Corticosteroids
 - Stabilize blood pressure
 - NaHCO\textsubscript{3}
 - Heparine
 - Diuretics

- Avoid bleeding during surgery
 - Training
 - Controlled hypotension
 - Acute normovolämic hemodilution
Acid-base balance

- BGA (0.7 ml blood / 0.2 ml blood in capillary)

- Metabolic acidosis: BE x kgBW/4 mval NaHCO₃

- Metabolic alkalosis: BE x kgKG/4 mval Lysin.HCl

- Respiratory acidosis: elevate tidal volume

- Respiratory alkalosis: decrease tidal volume
Necessary preparations

- Fasting depends on species and experiment
- Always water ad lib.
- Bedding for thermoregulation
- preOP und postOP individual housing with contact to other animals
- Shaving, cleaning of skin, fur, claws

- Conditioning on specific manipulations postOP (personal, measuring instruments, treadmill)
Premedication (1)

- Premedication is species specific
- Depends on animal type and temperament, feasibility of venous cannulation in the conscious animal
Premedication (2)

- Benzodiazepines
 - Midazolam
 - Diazepam

- Barbiturates
 - Thiopentone

- Neuroleptics
 - Promazin
 - Butyrophenone

- Dissociative anesthetics
 - Ketamine in combination with Xylazin

- Analgetics
 - Opiates not alone for premedication

- Anticholinergics
 - Atropine only for ruminants (saliva)
Start

- Measure body weight
- Premedication i.m. or s.c.
- Animal on the table
- Ear vein cannulation
- Application of pharmacon until loss of consciousness
- Orotracheal intubation
- Eye ointment
- Fixation
- Gastric tube, bladder catheter, rectal temperature probe
- ECG
- Thermoregulation
- Preparation of skin for surgery
Intubation rat
Intubation rat
Rat ventilated
Rat, tail vein
Rat preOP
Intravenous anesthesia

- TIVA: each species (except mice)
 - pro: good adjustment (Propofol), use of Ketamine to avoid hypotension
 - contra: in rodents cannulation of a vein might be problematical
or volatile anesthesia

- Useful for each species
- 1-2 Vol% (closed system)
 - pro: good adjustment
 - contra: decrease of blood pressure
- Problematic during electrophysiologic measurements
Anesthetics (1)

- Benzodiazepines: premedication and TIVA
- Opiates: always
- Ketamine, Xylazin: premedication and TIVA
- Propofol: TIVA
- Barbiturates: premedication
- Relaxants: if needed
- Volatile: Isoflurane
Anesthetics (2)

- **Benzodiazepines**
 - Not alone for surgery!
 - Anticonvulsant, anxiolytic, paradox reaction
 - Minor respiratory depression when given alone
 - Respiratory depression when given with opiates
 - No major influence on cardiovascular system

- **Opiate**
 - Respiratory depression
 - Brain perfusion decreases
 - Anti-stress
 - Hypotension, venous pooling
 - Histamine release
 - Take care of drug half-life in case of antagonisation
Anesthetics (3)

- **Ketamine**
 - Analgesia, amnestic (catalepsy)
 - Increase of brain pressure!
 - Emergency drug (limited respiratory depression)
 - Increase of blood pressure (systemic and pulmonal)
 - Pos. chronotropic – sympathomimetic
 - Pos. inotropic – cardiac output increases
 - Cardiac work load increases

- **Xylazine (α2-agonist)**
 - Sedating, hypnotic, relaxant
 - Potentiates Ketamine
Anesthetics (4)

- **Barbiturates**
 - Take care of respiratory depression
 - Decreases brain pressure
 - Neg. inotropic
 - Decreases blood pressure and preload
 - Reflectory tachycardia, VPCs

- **Propofol**
 - No analgesia
 - Decreases brain perfusion and O_2-consumption in brain
 - Neg. inotropic
 - Decreases blood pressure
 - Brady- or tachycardia
Volatile anesthetics

- Isoflurane
 - brain
 - Spasms (ton.-clon.), O$_2$-consumption decreased, dilates brain vessels (metabol. coupling deranged, ischemic regions?), brain pressure relatively stable
 - Cardiovascular system
 - VPCs, neg. inotropic, cardiac filling pressures increase, coronary dilatation (shunt, steal)
 - Direct action on vascular wall + autonomic NS, hypotension,
 - Lung
 - FRC decreases, death space increases, HPV diminished (shunt)
 - Kidney
 - GFR decreases, nephrotoxicity (fluoride),
 - Splanchnic compartment
 - Liver perfusion decreases, hepatotoxicity of Halothane
Typical combinations

- **Ruminants**
 - Atropine (1mg i.m.)
 - Thiopentone 15 mg/kg i.v. bolus
 - Fentanyl 0.1 mg/kg i.v. bolus
 - Fentanyl bypass: 0.01 mg/kg/h
 - Propofol bypass: 10 mg/kg/h
Typical combinations

- Pig
 - No atropine!!!
 - 20 mg/kg Ketamine + 1.76 mg/kg Acepromazin i.m.
 - Thiopentone 15 mg/kg i.v. bolus
 - Fentanyl 0.1 mg/kg i.v. bolus
 - Fentanyl bypass: 0.016 mg/kg/h
 - Propofol bypass: 10 mg/kg/h
Pig intubated
Pig: ear artery for pressure monitoring and blood gas
Typical combinations

- **Rabbit**
 - 25 mg/kg Ketamine + 2 mg/kg Xylazin i.m.
 - 50 mg Ketamine + 2 mg Xylazin ad 5 ml NaCl
 - Ketaminebypass: 60 mg/kg/h
 - Fentanylbypass: 0.15 mg/kg/h; Fentanylbolus: 0.025 mg
 - Or: Xylazinbypass: 2 mg/kg/h
 - If necessary Isoflurane
Rabbit: ear vein and ear artery
Rabbit intubation
Typical combinations

- Rat
 - 100 mg/kg Ketamine + 5 mg/kg Xylazin i.p.
 - 0.6-1 Vol% Isoflurane
 - 50 mg/kg Thiopentone i.p.
Typical combinations

- **Mouse**
 - 100 mg/kg Ketamine + 10 mg/kg Xylazin i.p.
 - 1 ml Ketamin® + 0.1 ml Rompun® ad 10 ml saline: give 0.1 ml per 10 g mouse.
 - Re-dosing is done using a forth of the dose to effect
Monitoring during anesthesia

- Minimum requirement (except mouse)
 - ECG
 - ETCO\(_2\)
 - Inspiratory pressure
 - Body temperature
 - Clinical examination!

- Long-term surgery
 - Arterial blood pressure (invasive)

- If necessary
 - CVP, PAP, PCWP, CO
Monitoring during anesthesia

- Blood gas
 - arterial: \(\text{paCO}_2\), pH, \(\text{HCO}_3\), \(\text{O}_2\)-sat, \(\text{paO}_2\)
 - venous: \(\text{O}_2\)-sat, pH, BE
- Electrolytes
 - K, Na, Ca,
- Substrates
 - glucose, lactate
Anticoagulation

- Heparin i.v. (low MW)
 - Total anticoagulation (HLM): 300 IE/kgBW i.v.
 - postOP anticoagulation: 30 IE/kgBW i.v. every 8-12 hrs.

- Lovenox s.c. (large animals)
 - 40 mg twice daily

- Protamin: to antagonize heparin
 - Take care of blood pressure decrease! Same amounts of units as heparin. Start with half of dosis
End of anesthesia

- Stop bypasses and volatile anesthetics
- Criteria for extubation
 - Spontaneous breaths against 10 mmHg
 - $\text{SaO}_2 > 95\%$ at $\text{FiO}_2 0.3$; $\text{paO}_2 > 70$ mmHg
 - $\text{paCO}_2 < 45$ mmHg
- Warm up (Bair-Hugger)
- Suction from intratracheal tube
- Silence
- Eyelid reflex positive
- Start postoperative therapy against pain
- Start postoperative management against stress in pigs to prevent overheating
Postoperative therapy

- i.v.-infusions
- Oxygen via mask
- Warm up or cool down (pigs)
- Antibiotics (start preOP, follow 3 days)
- Smooth bed made of bedding material
- **Personal care!!!**
Postoperative analgesia

- Cave: respiratory depression
 - Sufficient spontaneous breaths
 - Start as early as possible
 - Control the animal
 - Animals does not eat
 - Animal has buckled back
 - Respiration is accelerated
 - Pulse/heart frequency is accelerated
 - movements
 - Loss of body weight (chronic pain/distress)
Postoperative analgesia

■ Opiates
 ■ Bolus s.c. oder i.m. (during the night!)
 • Buprenorphin each 4-8 hrs.
 • Piritramid each 6-8 hrs.
 ■ Via drinking water (rodents)
 • Piritramid ad lib.

■ Ketamine
 ■ i.v. bypass

■ Nonsteroid antiphlogistics
 • Metamizol each 8 hrs.
THANK YOU!