Hybrid F-MISO PET/MRI for radiation therapy response assessment in cervix cancer

M. DANIEL1,2, P. ANDRZEJEWSKI1,2, A. STURDZA2, K. MAJERCAKOVA1,2, P. BALTZER1,3, K. PINKER1,2, W. WADSAK1,4, R. PÖTTER1,2, P. GEORG1,5, T. HELBICH1,3, D. GEORG1,2

1Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna, Austria
2Department of Radiation Oncology, Medical University and General Hospital Vienna, Austria
3Department of Biomedical Imaging and Image-guided Therapy, Medical University and General Hospital of Vienna, Austria
4Department of Nuclear Medicine, Medical University of Vienna and General Hospital of Vienna, Austria
5EBG MedAustron GMBH Wr.Neustadt, Austria
Starting Point & Purpose

Purpose:

• investigate spatio-temporal stability of cervix cancer characteristics by repetitive multimodal/multiparametric PET and MR imaging
 – Tracer: F18-MISO (hypoxia)

• Previous study: PET/CT + MR
 – poor patient compliance

• Current study: Hybrid PET/MR
 – Biograph mMR Scanner (SIEMENS)

• Study concept was conserved

[P. Georg, P. Andrzejewski et al., 2017, MIBI in press]
Study Concept

baseline | time point 1 | time point 2 | follow up
FMISO PET/MR | FMISO PET/MR | FMISO PET/MR | FMISO PET/MR

week 0 | week 1-5 | week 6&7 | week 19
external beam radiotherapy | brachytherapy | concomitant chemotherapy

4 imaging time points (BL / TP1 / TP2 / FU)

Obtained modalities:

T2w/PET DCE ADC K\text{trans} ABrix iAUC
Materials & Methods

• 8 patients entered

Statistical Evaluation:
 – change of GTV
 – mean values
 – histogram-based parameters
 – voxel-by-voxel analysis
 → Intra-TP
 → Inter-TP
 – subvolume analysis:
 → Sørensen–Dice coefficients of thresholded regions
Change of GTV

- FIGO stage: IIB - IVA

![Graph showing change of GTV over time with PET/MR and PET/CT+MR comparisons.]

![Images of transversal and sagittal views of medical scans.]

Hybrid F-MISO PET/MRI for TA in cervix cancer/ DANIEL M.
Change of Multimodal Parameters

- change of the mean value over the whole GTV

<table>
<thead>
<tr>
<th>mean</th>
<th>ADC</th>
<th>iAUC</th>
<th>k^{trans}</th>
<th>A_{Brix}</th>
<th>DCE$_{1\text{min}}$</th>
<th>T2w</th>
<th>PET TBR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>BL-TP1</td>
<td>16%</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>15%</td>
<td>n. sign.</td>
<td>mean</td>
</tr>
<tr>
<td>BL-TP2</td>
<td>24%</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-21%</td>
<td>-27%</td>
</tr>
<tr>
<td>BL-FU</td>
<td>28%</td>
<td>-24%</td>
<td>-37%</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-19%</td>
<td>n. sign.</td>
</tr>
<tr>
<td>TP1-TP2</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-28%</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-32%</td>
<td>-26%</td>
</tr>
<tr>
<td>TP1-FU</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-15%</td>
<td>n. sign.</td>
</tr>
<tr>
<td>TP2-FU</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>n. sign.</td>
<td>-15%</td>
<td>-25%</td>
</tr>
</tbody>
</table>
Histogram Parameters of ADC

Kurtosis

Skewness

BL TP1 TP2 FU

Hybrid F-MISO PET/MRI for TA in cervix cancer/ DANIEL M.
Histogram Parameters

- **Skewness**

- **Kurtosis**

 A_{Brix}: sign. drop TP1-TP2: -25%

 $DCE_{1\text{min}}$: sign. drop: $+1,26(\text{BL}) \mid +0,72(\text{TP1}) \mid -0,66(\text{TP2})$
Voxel by Voxel Analysis: INTER-TIMEPOINT

all modalities showed small positive self-correlation coefficients of 0.2 to 0.3

<table>
<thead>
<tr>
<th>PET–PET correlation</th>
<th>all GTV voxels</th>
<th>thresholded (>1.4 TBR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL-TP1</td>
<td>+0.6 ± 0.1</td>
<td>+ 0.5 ± 0.2</td>
</tr>
<tr>
<td>TP1-TP2</td>
<td>+0.6 ± 0.3</td>
<td>+ 0.5 ± 0.2</td>
</tr>
<tr>
<td>TP2-FU</td>
<td>+0.4 ± 0.4</td>
<td>+ 0.4 ± 0.4</td>
</tr>
<tr>
<td>Over all</td>
<td>+0.5 ± 0.2</td>
<td>+ 0.5 ± 0.3</td>
</tr>
</tbody>
</table>

PET tumor to background ratio

![Graph showing PET tumor to background ratio with different markers for BL&TP1, TP1&TP2, and TP2&FU]
Voxel by Voxel Analysis: INTRA-TIMEPOINT

$DCE_{1\text{min}}, K^{\text{trans}}, iAUC$ and A_{Brix} showed positive correlation coefficients around 0.5 to 0.6

A_{Brix}–FMISO correlation:

• FMISO & hypoxia

• A_{Brix} & hypoxia [Fjeldbo et al., 2016]
No correlation of DCE-derived parameters ($A_{Brix}/K_{trans}/iAUC$) with FMISO could be observed

Fjeldbo et al., 2016
DICE Coefficients of Subvolumes

DICE coefficient - PET

- BL-TP1
- TP1-TP2
- TP2-FU

- **PET/CT+MR study**
- **TH 1.4**
- **TH 2.0**

Graphs:
- Transversal
- Coronal
- Saggital
Conclusion

• Hybrid PET/MR facilitates multimodality imaging research
 – Logistic challenges with PET/CT and MR
• A_{Brix} provides complementary information to FMISO-uptake
• Shortcoming: so far few patients
 – Larger patient numbers in multicentric studies?
• At time of brachytherapy boost hypoxic subvolumes largely reduced

Thank you for your attention
The financial support by the Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development is gratefully acknowledged.

and many others
References

• Georg, P., Andrzejewski, P. *et al.* Changes in tumor biology during chemoradiation of cervix cancer assessed by multiparametric MRI and hypoxia PET. *MIBI (in press)*