Fully automated multi-criterial VMAT plan optimization for prostate cancer whole-pelvic radiotherapy

Buschmann M.1,2, Sharfo A.3, Penninkhof J.3, Seppenwoolde Y.1,2, Goldner G.1, Georg D.1,2, Breedveld S.3, Heijmen B.3
1Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Austria
2Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna / AKH Vienna, Austria
3Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands

Objective
Inclusion of pelvic lymph nodes in prostate radiotherapy results in large and complex target volumes with a concave shape. This study evaluates the benefit of automated VMAT optimization (VMAT$_{auto}$) compared to manual planning (VMAT$_{manual}$) for patients treated with a simultaneously integrated boost (SIB) technique.

Materials and Methods
Patients were treated with VMAT using a SIB plan, delivering 60 Gy and 50 Gy in 25 fractions to the prostate (PTV-P) and the pelvic lymph nodes (PTV-LN), respectively, followed by a sequential-boost plan, delivering 13 Gy in 5 fractions to the prostate (PTV-P).

All plans were optimized in the Monaco treatment planning system (Elekta AB). Fully automated planning VMAT$_{auto}$ was performed with Erasmus iCycle [1] as a preoptimizer, guided by a site-specific wishlist, containing the goal functions that are optimized in a specific order and hard constraints that must not be violated. Configuration of the autoplanning system was based on manual VMAT plans of 5 training patients.

VMAT$_{auto}$ and VMAT$_{manual}$ plans were compared for an independent set of 30 evaluation patients through dose-volume parameter analysis and blinded physician scoring.

Results
- All VMAT$_{auto}$ and VMAT$_{manual}$ plans were clinically acceptable.
- The radiation oncologist preferred in the blinded review the VMAT$_{auto}$ plan for 27 (90%) patients and the VMAT$_{manual}$ plan for the remaining 3 patients.
- Mean OAR doses were statistically significantly lower with VMAT$_{auto}$ for rectum, bladder and bowel (Figure 1 and Table 1).
- Plan conformity substantially improved in VMAT$_{auto}$ plans (Figure 2).
- Target volume doses were similar in both optimization approaches with slightly higher coverage V$_{95\%}$ in VMAT$_{manual}$ (Table 1).
- The number of monitor units was on average 55% and 27% higher in VMAT$_{auto}$ for the SIB-plan and the boost plan, respectively.
- Manual planning time was reduced by 76 minutes on average through VMAT$_{auto}$.

Conclusion
Fully automated VMAT plan optimization for whole-pelvic prostate radiotherapy with large, concave target volumes was feasible, and resulted in substantially reduced OAR doses compared to manual planning by an expert, especially for the bladder.

References

Table 1: Comparison of dosimetric parameters for the total summed treatment

<table>
<thead>
<tr>
<th>Targets</th>
<th>VMAT$_{auto}$</th>
<th>Manual - Auto</th>
<th>p-value</th>
<th>OAR</th>
<th>VMAT$_{manual}$</th>
<th>Manual - Auto</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV-P V$_{95%}$ (%)</td>
<td>97.8 ± 0.6</td>
<td>0.6 ± 0.8</td>
<td><0.001</td>
<td>Rectum D$_{2%}$ (Gy)</td>
<td>70.2 ± 1.6</td>
<td>1.1 ± 0.8</td>
<td><0.001</td>
</tr>
<tr>
<td>PTV-P D$_{2%}$ (Gy)</td>
<td>75.1 ± 0.1</td>
<td>-0.1 ± 0.3</td>
<td>0.020</td>
<td>Rectum D$_{95%}$ (Gy)</td>
<td>34.2 ± 4.0</td>
<td>4.5 ± 2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>PTV-P D$_{iso}$ (Gy)</td>
<td>73.1 ± 0.1</td>
<td>-0.1 ± 0.3</td>
<td>NS</td>
<td>Bladder D$_{2%}$ (Gy)</td>
<td>66.7 ± 5.8</td>
<td>2.2 ± 2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>PTV-LN V$_{95%}$ (%)</td>
<td>99.3 ± 0.3</td>
<td>-0.4 ± 0.6</td>
<td>0.003</td>
<td>Bladder D$_{95%}$ (Gy)</td>
<td>26.3 ± 4.2</td>
<td>10.7 ± 3.2</td>
<td><0.001</td>
</tr>
<tr>
<td>PTV-LN D$_{2%}$ (Gy)</td>
<td>54.4 ± 1.3</td>
<td>-0.3 ± 0.6</td>
<td>NS</td>
<td>Bowel D$_{2%}$ (Gy)</td>
<td>45.3 ± 3.3</td>
<td>0.3 ± 1.7</td>
<td>NS</td>
</tr>
<tr>
<td>PTV-LN D$_{iso}$ (Gy)</td>
<td>50.8 ± 0.2</td>
<td>-0.4 ± 0.2</td>
<td><0.001</td>
<td>Bowel D$_{95%}$ (Gy)</td>
<td>15.3 ± 3.3</td>
<td>2.1 ± 1.2</td>
<td><0.001</td>
</tr>
</tbody>
</table>