
Stefan Howorka

University College London, Department of Chemistry, London WC1H0AJ, UK
s.howorka@ucl.ac.uk

Replicating the biological function of membrane proteins with synthetic components is scientifically and technologically exciting. I describe the design and generation of membrane nanopores assembled from DNA. The DNA nanopores consist of a bundle of six hexagonally arranged duplexes which are interconnected by cross-overs. The negatively charged nanobarrels carry lipid anchors to facilitate the pores’ insertion into the hydrophobic bilayers1-3. The pores facilitate the control transport of molecular cargo across the membrane; both voltage-gated4 and ligand-gated ion-selective channels could be built3. Pores can also be engineered to kill cells5. Membrane-spanning DNA pores will open up the design of entirely new molecular devices for applications within single-molecule research, biosensing, catalysis, drug delivery, and nanofluidics6.