MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
cepii_allergie.png
 
 
 
Hauptnavigation
  • Home
  • Allgemeine Informationen
  • Forschung
  • Studium & Lehre
  • FachärztInnenausbildung
 
IPA / Single View
 
Subnavigation

Research News

 

The unique applicability of the human placenta to the Adverse Outcome Pathway (AOP) concept: the placenta provides fundamental insights into human organ functions at multiple levels of biological organisation

Claudia Gundacker and Isabella Ellinger Reproductive Toxicology, Volume 96, September 2020, Pages 273-281 [more]

 

Toward personalization of asthma treatment according to trigger factors

Asthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. While in the past few drugs for treatment of asthma were available, new treatment options are currently emerging which appear to...[more]

 

Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy

Rodríguez-Domínguez A, Berings M, Rohrbach A, Huang HJ, Curin M, Gevaert P, Matricardi PM, Valenta R, Vrtala S. Molecular Profiling of Allergen-Specific Antibody Responses May Enhance Success of Specific Immunotherapy. J Allergy...[more]

 

Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer

He S, Lyu F, Lou L, Liu L, Li S, Jakowitsch J, Ma Y.[more]

 

Transfer Learning Using a Multi-Scale and Multi-Network Ensemble for Skin Lesion Classification

A. Mahbod, G. Schaefer, Ch.Wang, G.Dorffner, R. Ecker, I. Ellinger [more]

 

A promising hypoallergen for immunotherapy of peanut allergy

Tscheppe A, Palmberger D, van Rijt L, Kalic T, Mayr V, Palladino C, Kitzmuller C, Hemmer W, Hafner C, Bublin M, van Ree R, Grabherr R, Radauer C, Breiteneder H: Development of a novel Ara h 2 hypoallergen with no IgE binding or...[more]

 

A Two-Stage U-Net Algorithm for Segmentation of Nuclei in H&E-Stained Tissues

Mahbod A., Schaefer G., Ellinger I., Ecker R., Smedby Ö., Wang C. (2019) In: Reyes-Aldasoro C., Janowczyk A., Veta M., Bankhead P., Sirinukunwattana K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science, vol...[more]

 
Displaying results 15 to 21 out of 96
<< First < Previous 1 2 3 4 5 6 7 Next > Last >>
 
Inhaltsbereich

Amirreza Mahbod, Post-Doc in the group of Isabella Ellinger, has achieved PLACE 1 in the leaderboard of the MICCAI 2021 Foot Ulcer Segmentation Challenge.

Foot ulcer is a common complication of diabetes mellitus; it is associated with substantial morbidity and mortality and remains a major risk factor for lower leg amputation. Extracting accurate morphological features from the foot wounds is crucial for proper treatment. Computer-mediated approaches enable segmentation of the lesions and extraction  of related morphological features. Deep learning-based methods and more specifically convolutional neural networks (CNN) have shown excellent performances for various image segmentation tasks including medical image segmentation. In this work, Amirreza Mahbod, Rupert Ecker and Isabella Ellinger proposed an ensemble approach based on two encoder-decoder-based CNN models, namely LinkNet and UNet, to perform foot ulcer segmentation. Our method achieved the first rank in the FUSeg challenge leaderboard.

Leaderboard link: https://uwm-bigdata.github.io/wound-segmentation/

Challenge link: https://fusc.grand-challenge.org/

Method description: https://arxiv.org/abs/2109.01408

 
 
Drucken
 

Schnellinfo

 
-- Green IPA
-- Technology Platforms
-- Kontakt
-- News (Archiv)
-- Seminare
-- Social Life
-- Intranet Login
-- QM-Dokumente (Intranet)
-- Bildergalerie (Intranet)
-- Alumni
-- Links
 
 

Featured

 
 
 
© MedUni Wien  | 
 Impressum | Nutzungsbedingungen | Datenschutzerklärung | Barrierefreiheit | Kontakt