Webtable 1: Tests for proportional hazards assumption concerning cardiovascular mortality.

	ρ	χ^{2}	p
Bmi	-0.06766	0.966	0.32571
Bmi'	0.06094	0.722	0.39555
Mdrd	-0.06348	0.786	0.37526
Mdrd'	0.08038	0.910	0.34018
Proteinuria	-0.00912	0.016	0.89815
Age	0.10213	1.870	0.17178
Sex $=$ Women	0.02901	0.155	0.69380
HdL	-0.08174	1.428	0.23203
LDL	-0.02643	0.237	0.62607
Triglycerides	-0.13002	2.560	0.10935
Uric acid	-0.00139	0.000	0.98314
Smoke $=$ exsmoke	-0.01739	0.051	0.82086
Smoke $=$ smoker	-0.16445	4.952	0.02609
Blood glucose	0.02490	0.213	0.64419
Antihypertensives	-0.10098	2.140	0.14317
Sport	-0.07831	0.931	0.33450
Alcohol	-0.01255	0.003	0.86140
Map	0.02877	0.225	0.63510
BMI * MDRD	0.06299	0.777	0.37799
Bmi' * MDRD	-0.05880	0.632	0.42668
Bmi $*$ MDRD ${ }^{\text {c }}$	-0.07852	0.872	0.35036
Bmi'* MDRD'	0.08009	0.816	0.36647
Global		2.815	0.13789

Webfigure 1: Scaled Schoenfeld residuals for the factor smoke concerning cardiovascular mortality.

Under the proportional hazards assumption, the residuals are constant over time. For the factor smoke, residuals are decreasing. Therefore a time dependent term was used for the factor smoke in the final model.

Webtable 2: Effect contrasts for cardiovascular death (alternative model 1)

			95% CI		
CKD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	0.29	0.06	1.47	0.14
	overweight vs. normal	1.27	1.04	1.57	0.02
	obese vs. normal	1.58	0.83	2.99	0.16
Mild	underweight vs. normal	1.05	0.43	2.58	0.91
	overweight vs. normal	0.98	0.84	1.14	0.78
	obese vs. normal	0.95	0.60	1.50	0.81
	underweight vs. normal	0.53	0.05	6.02	0.61
	overweight vs. normal	0.61	0.45	0.83	0.00
	obese vs. normal	0.17	0.07	0.42	0.00

To validate the model of the main text (table 3a) we fitted three additional models: In alternative model 1, variables were included as confounders in a multivariable Cox model if the change in the Chi-Square statistics of the BMI*GFR interaction term exceeded 10%. Contrasts were calculated identically to Table 3a of the main paper. Wald test for the effect size of the $B M I^{*} G F R$ interaction term: $P=0.0001$.

Webtable 3: Effect contrasts for cardiovascular death (alternative model 2)

			95% CI		
CKD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	0.74	0.16	3.37	0.69
	overweight vs. normal	1.30	1.05	1.60	0.01
	obese vs. normal	2.11	1.08	4.14	0.03
Mild	underweight vs. normal	1.36	0.60	3.09	0.46
	overweight vs. normal	1.07	0.95	1.21	0.28
	obese vs. normal	1.34	0.91	1.96	0.14
	underweight vs. normal	0.76	0.08	7.78	0.82
	overweight vs. normal	0.71	0.52	0.97	0.03
	obese vs. normal	0.31	0.13	0.77	0.01

[^0]Webtable 4: Effect contrasts for cardiovascular death (alternative model 3)

			95% CI		
CKD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	0.39	0.08	1.81	0.23
	overweight vs. normal	1.43	1.17	1.75	0.00
	obese vs. normal	2.44	1.30	4.58	0.01
Mild	underweight vs. normal	0.85	0.36	2.02	0.72
	overweight vs. normal	1.02	0.91	1.15	0.76
	obese vs. normal	1.02	0.71	1.46	0.92
	underweight vs. normal	0.37	0.03	3.87	0.40
	overweight vs. normal	0.59	0.44	0.79	0.00
	obese vs. normal	0.14	0.06	0.31	0.00

For alternative model 3 a propensity score was created by logistic regression of cardiovascular death on all potential confounders. Alternative model 3 uses this propensity score as time dependent covariable in a Cox regression model. Contrasts were calculated identically to Table 3 a of the main paper. Wald test for the effect size of the $\mathrm{BMI}^{*} \mathrm{GFR}$ interaction term: $\mathrm{P}=0.0001$.

Webtable 5: Effect contrasts for cancer death (alternative model 1)

			95% CI		
CkD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	1.35	0.55	3.31	0.52
	overweight vs. normal	1.07	0.90	1.26	0.45
Mild	obese vs. normal	1.33	0.76	2.31	0.32
	underweight vs. normal	1.05	0.46	2.40	0.91
	overweight vs. normal	1.03	0.89	1.18	0.72
	obese vs. normal	1.10	0.69	1.74	0.69
Moderate	underweight vs. normal	1.02	0.11	9.09	0.99
	overweight vs. normal	0.81	0.56	1.17	0.26
	obese vs. normal	0.51	0.16	1.69	0.27

[^1]Webtable 6: Effect contrasts for cancer death (alternative model 2)

			95% CI		
CkD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	1.56	0.61	3.96	0.35
	overweight vs. normal	1.06	0.89	1.26	0.49
	obese vs. normal	1.36	0.76	2.43	0.30
Mild	underweight vs. normal	1.40	0.61	3.22	0.43
	overweight vs. normal	1.07	0.94	1.23	0.31
	obese vs. normal	1.37	0.86	2.18	0.18
	underweight vs. normal	1.57	0.16	15.49	0.70
	overweight vs. normal	0.94	0.63	1.40	0.75
	obese vs. normal	0.91	0.23	3.60	0.89

To validate the model of the main text (table 3a) we fitted three additional models: For alternative model 2 a propensity score was created by logistic regression of cardiovascular death on all potential confounders. Alternative model 2 uses this propensity score in a Cox regression model stratified by quintiles of the propensity score. Contrasts were calculated identically to Table 3a of the main paper. Wald test for the effect size of the BMI^{*} GFR interaction term: $\mathrm{P}=0.2609$.

Webtable 7: Effect contrasts for cancer death (alternative model 3)

			95% CI		
CkD	Weight contrast	HR	Lower	Upper	p
Absent	underweight vs. normal	1.35	0.56	3.26	0.50
	overweight vs. normal	1.01	0.86	1.19	0.89
	obese vs. normal	1.12	0.65	1.93	0.68
Mild	underweight vs. normal	1.03	0.46	2.29	0.95
	overweight vs. normal	1.00	0.88	1.14	0.98
	obese vs. normal	1.01	0.67	1.53	0.95
	underweight vs. normal	0.97	0.11	8.65	0.98
	overweight vs. normal	0.82	0.57	1.16	0.26
	obese vs. normal	0.52	0.17	1.60	0.25

Effect contrasts for cancer death (alternative model 3) Legend: To validate the model of the main text (table 3a) we fitted three additional models: For alternative model 2 a propensity score was created by logistic regression of cardiovascular death on all potential confounders. Alternative model 3 uses this propensity score as time dependent covariable in a Cox regression model. Contrasts were calculated identically to Table 3a of the main paper. Wald test for the effect size of the BMI*GFR interaction term: $\mathrm{P}=0.0829$.

[^0]: To validate the model of the main text (table 3a) we fitted three additional models: For alternative model 2 a propensity score was created by logistic regression of cardiovascular death on all potential confounders. Alternative model 2 uses this propensity score in a Cox regression model stratified by quintiles of the propensity score. Contrasts were calculated identically to Table 3a of the main paper. Wald test for the effect size of the BMI*GFR interaction term: $\mathrm{P}=0.0070$.

[^1]: To validate the model of the main text (table 3a) we fitted three additional models: In alternative model 1 , variables were included as confounders in a multivariable Cox model if the change in the Chi-Square statistics of the BMI*GFR interaction term exceeded 10the main paper. Wald test for the effect size of the BMI*GFR interaction term: $\mathrm{P}=0.0808$.

