Supplementary Online Content

Dunkler D, Dehghan M, Teo KK, et al; ONTARGET Investigators. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern Med. Published online August 12, 2013. doi:10.1001/jamainternmed.2013.9051.
eAppendix. The ONTARGET Investigators
eMethods. Supplementary methods
eTable 1. Description of food items in the food frequency questionnaire
eTable 2. Assumed protein content per serving size and conversion between servings and grams based on USDA United State Department of Agriculture National Nutrient database for standard reference
eTable 3. Changes in the number of participants with new microalbuminuria or macroalbuminuria at study end when the minimum increase in UACR between baseline and 5-year follow-up measurement is changed
eTable 4. Clinical and nutrition characteristics of participants with type 2 diabetes mellitus, separated by the 3 outcome states at 5.5 years of follow-up
eTable 5. Distribution of the 3 outcome states at 5.5 years of follow-up separated by normoalbuminuria and microalbuminuria at baseline
eTable 6. Comparison of albuminuria (UACR) and GFR-decline renal events
eTable 7. Combined renal outcome: single-variable models adjusted with known confounders
eTable 8. Combined renal outcome: multivariable model adjusted with known confounders
eTable 9. Combined renal outcome: single-variable models adjusted with the extended set of confounders 1
eTable 10. Combined renal outcome: multivariable model adjusted with the extended set of confounders 1
eTable 11. Combined renal outcome: single-variable models adjusted with the extended set of confounders 2
eTable 12. Combined renal outcome: multivariable model adjusted with the extended set of confounders 2
eTable 13. Combined renal outcome: multivariable logistic model adjusted with known confounders
eTable 14. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with known confounders
eTable 15. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 1
eTable 16. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 2
eTable 17. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with known confounders
eTable 18. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 1
eTable 19. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 2
eTable 20. Combined renal outcome: multinomial logit model including only variables from the set of known confounders
eTable 21. Combined renal outcome: multinomial logit model including only variables from the set of extended confounders 1
eTable 22. Combined renal outcome: multinomial logit model including only variables from the set of extended confounders 2
eFigure 1. Combined renal outcome: single-variable models adjusted with known confounders
eFigure 2. Combined renal outcome: single-variable model with mAHEI adjusted with known confounders, separated for participant's albuminuria status at baseline
eFigure 3. Combined renal outcome: multivariable model adjusted with known confounders
eFigure 4. Comparison of estimates of multivariable models adjusted with known confounders after 2 and 5.5 years of follow-up
eReferences.

eAppendix. The ONTARGET Investigators

Current members of the Operations Committee are denoted by an asterisk. Previous members of the Operations Committee are denoted by a dagger. NC denotes National Coordinator, and NL National Leader. Steering Committee: S. Yusuf (Chair and Principal Investigator),* P. Sleight,* C. Anderson,* K. Teo,* I. Copland,* B. Ramos, \dagger L. Richardson,* J. Murphy,* M. Haehl,* L. Hilbrich, \dagger R. Svaerd,* K. Martin, \dagger D. Murwin,* T Meinicke, \dagger A. Schlosser,* G. Schmidt, \dagger R. Creek,* H. Schumacher,* M. Distel, \dagger B. Aubert, J. Pogue, L. Dyal, R. Schmieder, T. Unger, R. Asmar, G. Mancia, R. Diaz, E. Paolasso, L. Piegas, A. Avezum, G. Dagenais, E. Cardona Munoz, J. Probstfield, M. Weber, J. Young, R. Fagard, P. Jansky, J. Mallion, J. Mann, M. Böhm, B. Eber, N.B. Karatzas, M. Keltai, B. Trimarco, P. Verdecchia, A. Maggioni, F.W.A. Verheugt, N.J. Holwerda, L. Ceremuzynski, A. Budaj, R. Ferreira, I. Chazova, L. Rydén, T.L. Svendsen, K. Metsärinne, K. Dickstein, G. Fodor, P. Commerford, J. Redon, T.R. Luescher, A. Oto, A. Binbrek, A. Parkhomenko, G. Jennings, L.S. Liu, C.M. Yu, A.L. Dans, R. Shah, J.-H. Kim, J.-H. Chen, S. Chaithiraphan. Data and Safety Monitoring Board: J. Cairns (Chair), L. Wilhelmsen, J. Chalmers, J. Wittes, M. Gent, C.H. Hennekens. Adjudication Committee: G. Dagenais (Chair), N. Anderson, A. Avezum, A. Budaj, G. Fodor, M. Keltai, A. Maggioni, J. Mann, A. Parkhomenko, K. Yusoff, P. Auger, V. Bernstein, E. Lonn, A. Panju, I. Anand, J.T. Bigger, P. Linz, J. Healey, C. Held, C. McGorrian, M. Rokoss, J. Villar. Substudies/Publication Committee: P. Sleight (Chair), C. Anderson, R. Creek, A. Dans, R. Diaz, R. Fagard, J. Probstfield, R. Svaerd, K. Teo, T. Unger, S. Yusuf. Coordinating Centers: Hamilton - K. Teo, I. Copland, B. Ramos, A. McDonald, J. Pogue, L. Dyal, R. Afzal, F. Zhao, S. Yusuf; Oxford - P. Sleight, L. Richardson; Auckland - C. Anderson, J. Murphy. Sites and Principal Investigators by Country: Argentina - R. Diaz (NC), E. Paolasso (NL), R.A. Ahuad Guerrero, M. Amuchastegui, H.P. Baglivo, M. Bendersky, J. Bono, B. Bustos, A. Caccavo, L.R. Cartasegna, C.R. Castellanos, M.A. Cipullo, P. Crunger, C.A. Cuneo, M. Focaccia, J.J. Fuselli, E. Hasbani, M.A. Hominal, J. Humphreys, F. Inserra, C.R. Killinger, E. Kuschnir, C.R. Majul, O.D. Manuale, G. Martinez, E.M. Marzetti, R. Nordaby, A.D. Orlandini, J.C. Pomposiello, G.M. Rodríguez, J. Salas, O.A. Salomone, R.A. Sanchez, C. Serra, M.L. Vico; Australia - G.L.R. Jennings (NC), J.V. Amerena, L.F. Arnolda, G.M. Aroney, P.E. Aylward, C.F. Bladin, J.C. Bridgeman, B.R. Chambers, A.J. Corbett, D.S. Crimmins, D.B. Cross, L. Davies, S.M. Davis, G.A. Donnan, D.S. Eccleston, J.H. Frayne, R. Hendriks, G.K. Herkes, A.T. Hill, I.M. Jeffery, J.A. Karrasch, G. Koshy, T.H. Marwick, D.A. Owensby, M.W. Parsons, D.M. Rees, A. Russell, R. Schwartz, B. Singh, P.L. Thompson, J.H. Waites, W.F. Walsh, D.L. Walters, R.W. Watts, A.P. Whelan; Austria - M. Böhm (NC), B.E. Eber (NL), J.B. Bonelli, P. Dolliner, J.H. Hohenecker, G.S. Steurer, W.W. Weihs; Belgium - R. Fagard (NC), I. Bekaert, C. Brohet, P. Chaumont, P. Cheron, V. Crasset, J.-P. Degaute, P. Dendale, K. Dujardin, S. Elshot, S. Hellemans, M. Herssens, G. Heyndrickx, P. Laloux, H. Lesseliers, P. Noyens, M. Quinonez, F. Stammen, H. Striekwold, J. Thoeng, W. Van Mieghem, G. Vanhooren, G. Vervoort, M. Vrolix, B. Wollaert; Brazil - L. Piegas (NC), A. Avezum (NL), J.A.M. Abrantes, D. Armaganijan, J.C. Ayoub, L.C. Bodanese, A.C. Carvalho, M. Coutinho, J.P. Esteves, R.J.S. Franco, P.C.B.V. Jardim, J.F. Kerr Saraiva, P.E. Leães, L.N. Maia, J.A. Marin-Neto, R.L. Marino, D. Mion, Jr., J.R. Moreira, Jr., W. Oigman, R.C. Pedrosa, E.A. Pelloso, F.L. Plavnik, C.A. Polanczyk, Á. Rabelo, Jr., S. Rassi, G. Reis, A.B. Ribeiro, J.M. Ribeiro, J.C. Rocha, P.R.F. Rossi, R.D. Santos, J.C.E. Tarastchuk, M.N. Villalón; Canada - K. Teo (NC), G. Dagenais (NC), B. Abramson, M. Arnold, T. Ashton, P. Auger, I. Bata, K. Bayly, J. Beauchef, A. Bélanger, V. Bernstein, R. Bhargava, A.W. Booth, S. Bose, M. Boulianne, M. Cameron, Y.K. Chan, C. Constance, P. Costi, D. Dion, J. Douketis, D. Fell, J.P. Giannoccaro, A. Glanz, G. Gosselin, D. Gould, S. Goulet, F. Grondin, M. Gupta, G. Gyenes, J.W. Heath, V.A. Heath, A. Hess, J.G. Hiscock, G. Hoag, G. Honos, J. Imrie, R. Kuritzky, C. Lai, A. Lalani, A. Lamy, P. LeBouthillier, H. Lochnan, E. Lonn, B. Lubelsky, A. Mackey, M. Meunier, A. Milot, L.B. Mitchell, S. Nawaz, M. Omichinski, A. Panju, C. Pilon, D. Pilon, P. Polasek, G. Proulx, T. Rebane, A.J. Ricci, D.W. Rupka, É. Sabbah, D. Savard, N.K. Sharma, D. Shu, R. St. Hilaire, F. St. Maurice, R. Starra, B. Sussex, T. Szaky, P. Talbot, K.-W. Tan, T.B. To, S. Tobe, R. Tytus, R. Vexler, P. Whitsitt, V. Woo; China - L. Liu (NC), X. Bai, X. Chen, J. Feng, S. Fu, Y. Ge, L. Gong, Z. He, J. Huang, Y. Jiang, L. Li, Q.H. Li, Y. Liao, Z. Lu, F. Lu, S. Ma, F. Niu, C. Pan, F. Qian, X. Shi, N. Sun, M. Sun, G. Sun, J. Wang, S. Wang, Y. Wang, Z. Wu, X. Yan, X. Yang, H. Yang, X. Ye, S. Yuan, T. Zhang, C. Zhang, F. Zhang, S. Zhang, D. Zhao, B. Zheng, H.Y. Zhou, S. Zhou, J. Zhu; Czech Republic - P. Janský (NC), V. Dedek, J. Dvorák, R. Holaj, J. Kotouš, E. Pederzoliová, M. Polák, J. Povolný, K. Smetana, J. Špác; Denmark - T.L. Svendsen (NC), L. Götzsche, H.F. Juhl, K. Koelendorf, P.

Lund, F. Pedersen, O.L. Perdersen, T. Pindborg, L.H. Rasmussen, S.L. Rasmussen, K. Thygesen, C. Tuxen; Finland - K. Metsärinne (NL), R. Antikainen, M. Jääskivi, I. Kantola, M. Kastarinen, P. Kohonen-Jalonen, A. Koistinen, E. Lehmus, R. Nuuttila, M.-L. Tuominen, H. Ylihärsilä; France - J. Mallion (NC), N. Abenhaim, J. Allix, L. Boucher, M. Bourgoin, A. Boye, N. Breton, D. Cadinot, A. Campagne, J. Churet, G. Constantin, E. De Sainte Lorette, A. El Sawy, G. Etchegarray, S. Farhat, F. Lacoin, T. Latte, C. Magnani, D. Pineau-Valenciennes, M. Pithon, A. Quéguiner, J. Sicard, G. Sorbe, D. Taminau, H. Vilarem, J.Y. Vogel; Germany - H.H. Ebert, S. Genth-Zotz, N. Hermanns, C. Holzer, J. Minnich, D. Schimkus, M. Boehm (NC), J. Mann (NC), B. Brado, G. Claus, U. Dietz, R. Griebenow, T. Haak, K. Hahn, R. Hampel, H. Heitzer, G. Holle, T. Horacek, J. Jordan, C. Klein, R. Kolloch, S. Ludewig, W. Motz, T. Muenzel, H.P. Nast, M. Nauck, H. Nebelsieck, K. Rybak, H. Samer, T. Schaefer, J. Scholze, B. Schulze, Schleppinghoff, R. Schmieder, B. Schwaab, U. Sechtem, W. Sehnert, E. Steinhagen-Thiessen, G. Stenzel, P. Trenkwalder, B. Wedler, J. Zippel; Greece - N. Karatzas (NC), A. Achimastos, E. Diamantopoulos, A. Efstratopoulos, M. Elisaf, H. Karvounis, D. Mentzikof, D. Mytas, D. Papadogiannis, V. Pyrgakis, C. Stefanadis, D. Symeonidis, A. Tsoukas, I. Vogiatzis, S. Voyaki, C. Zamboulis; Hong Kong - C.-M. Yu (NC), C.K.H. Chan, L. Lam, Y.K. Lau, J. Sanderson, J. Wong, E.B. Wu, C.S. Yue; Hungary - M. Keltai (NC), I. Czuriga, I. Édes, C.S. Farsang, Á. Kalina, K. Karlócai, K. Keltai, M. Kozma, Z. László, V. Nagy, A. Papp, G.Y. Polák, I. Préda, A. Rónaszéki, M. Sereg, K. Simon, S. Sonkodi, J. Szegedi, S. Timár, K. Tóth, G.Y. Vándorfi, A. Vértes; Ireland - J. Feely, V.M.G. Maher, A.V. Stanton, P. Sullivan; Italy - B. Trimarco (NC), P. Verdecchia (NC), A. Maggioni (NL), E. Agabiti Rosei, G.B. Ambrosio, M. Bentivoglio, A. Branzi, P. Cavallo Perin, M. Chiariello, V. Cirrincione, R. Ferrari, R. Gattobigio, E. Giovannini, D. Giugliano, A. Lacchè, R. Lauro, G. Lembo, G. Marchetti, L. Moretti, L. Pancaldi, L. Partemi, S. Pede, G. Pettinati, G. Reboldi, R. Ricci, G. Rosiello, F. Rozza, M.G. Sardone, E.V. Scabbia, G. Selvetella, L. Tavazzi, P. Terrosu, A. Venco, A. Vetrano, M. Volpe, G. Zilio; Malaysia - T. Ismail, R.P. Shah, M. Singaraveloo, W.A. Wan Ahmad, Z. Yusof, K. Yusoff, I. Zainal Abidin, R. Zambahari; Mexico - E. Cardona Munoz (NC), L. Alcocer Diaz, S. Pascoe-Gonzalez, R. Arriaga Nava, G. De La Peña Topete, L.A. Elizondo Sifuentes, H.R. Hernández García, J. Illescas-Diaz, M.A. Macías Islas, J.A. Noriega Arellano, R. Olvera Ruiz, J.Z. Parra Carrillo, G. Velasco Sánchez, M. Vidrio Velásquez; the Netherlands - F.W.A. Verheugt (NC), N.J. Holwerda (NL), D.C.G. Basart, A.J.M. Boermans, H.A. Bosker, K.P. Bouter, C.P. Buiks, W.A. de Backer, J. J. de Graaf, J.H.M. Deppenbroek, F.D. Eefting, F.C.N.M. Gunneweg, H.R. Michels, D. Poldermans, G. Schrijver, M.I. Sedney, T. Slagboom, J.G. Smilde, G.E.M.G. Storms, R.M. Tjon, P.F.M.M. van Bergen, G.J.M. van Doesburg, L.H.J. van Kempen, H.F.C.M. van Mierlo, A. Veerman, F.A.A.M. Vermetten, A. Wester; New Zealand - W. Bagg, J. Benatar, R.J. Coxon, R.N. Doughty, D.H. Friedlander, R.A. Luke, P.L. Nairn, Y. Ratnasabapathy, A.M. Richards, G.P. Singh, R.A.H. Stewart, R.W. Troughton, H.D. White, M. Williams, S.P. Wong; Norway - K. Dickstein (NL), N. Bogale, J.O. Lier, J.E. Otterstad, P.K. Rønnevik, S. Skeie, P.O. Walle; Philippines - A.L. Dans (NC), M.T.B. Abola, J.C. Añonuevo, J.M. Jaro, D.R. Marañon, V.L. Mendoza, D.R. Morales, E.P. Pacheco, E.B. Reyes, A.A. Roxas, M.B. Sedurante; Poland - L. Ceremuzynski (NC), A. Budaj (NC), Z. Binio, M. Bronisz, P. Buszman, T. Czerski, M. Dalkowski, J. Gessek, A. Gieroba, K. Janik, M. Janion, T. KawkaUrbanek, R. Klabisz, M. Krauze-Wielicka, S. Malinowski, P. Miekus, J. Mormul, M. Ogorek, G. Opolski, M. Skura, M. Szpajer, M. Tendera, T. Waszyrowski, M. Wierzchowiecki, B. Zalska; Portugal - R. Ferreira (NC), R. Capucho, C. Correia, L. Cunha, J.M. Ferro, V. Gama Ribeiro, V. Gil, P. Marques da Silva, M. Oliveira Carrageta, R. Sebra Gomes, M. Veloso Gomes; Russia - I. Chazova (NC), F. Ageev, Y. Belenkov, A. Ivleva, Y. Karpov, M. Shestakova, E. Shlyakhto, S. Shustov, B. Sidorenko; Singapore - H.M. Chang, B. Kwok; Slovakia - G. Fodor (NC), A. Dukát, J. Gonsorcík, M. Hranai, J. Lietava, D. Pella, R. Rybar, L. Ruffini; South Africa - P. Commerford (NC), F. Bonnici, B. Brown, A.J. Dalby, G.J. Gibson, L. Herbst, J. King, E. Klug, M. Middle, D. P. Naidoo, M. Pretorius, G. Podgorski, N. Ranjith, K. Silwa-Hahnle, H. Theron; South Korea - J.H. Kim (NC), S.C. Chae, N.S. Chung, K.P. Hong, M.H. Jeong, H.J. Kang, J.J. Kim, M.H. Kim, H.S. Seo, E.K. Shin; Spain - J. Redón (NC), J. Abellán, P. Aranda, V. Barrios, C. Calvo, M. De La Figuera, E. De Teresa, R. Durá, F. Escobar, F. Fernandez-Cruz, E. Galve, J. Garcia-Puig, B. Gil-Extremera, R. Gomis, O. GonzalezAlbarran, J.R. González-Juanatey, A. Llacer, L. López-Bescós, J. Oliván, A. Picó, A. Pose, A. Roca-Cusachs, L.M. Ruilope; Sweden - L. Rydén (NC), A. Alvång, P.-Å. Boström, M. Dellborg, U.-B. Ericsson, J. Herlitz, T. Juhlin, K. Pedersen, B. Sträng, B. Sundqvist, B.-O. Tengmark, G. Ulvenstam, B. Westerdahl, L. Winberg; Switzerland - T.R. Luescher (NC), I. Baumgartner, P. Dubach, A. Gallino, T. Moccetti, G. Noll, A. Nordmann, H. Rickli, H. Schläpfer, K. Weber; Taiwan - J.-H. Chen (NC), T.H. Chao, C.Y. Chen, J.J. Cheng, H.C. Chiou,
C.C. Fu, M. Fu, W.T. Lai, Y.H. Li, L.M. Lien, C.D. Tsai, J.H. Wang, P.S. Yeh; Thailand - S. Chaithiraphan (NC), T. Chantadansuwan, K. Jirasirirojanakorn, R. Krittayaphong, P. Laothavorn, N. Mahanonda, S. Sitthisook, S. Tanomsup, S. Tansuphaswadikul, P. Tatsanavivat, S. Yamwong; Turkey - A. Oto (NC), M. Akin, N.T. Caglar, A. Ergin, H. Müderrisoglu, A. Oguz, Z. Ongen, V. Sansoy, T. Tetiker, A. Uysal; Ukraine A. Parkhomenko (NC), E. Amosova, O. Cherkasova, Y. Dykun, G. Dzyak, A. Galystska, O. Grishyna, O. Jaremenko, L. Kononenko, E. Koval, V. Kovalenko, V. Netyazhenko, T. Pertseva, A. Prokhorov, G. Radchenko, Y.U. Rudyk, Y. Sirenko, A. Skarzhevsky; United Arab Emirates - A.S. Binbrek (NC), A.A.R. Al Hajiri, E. Al Hatou, A.A.S. Al-Sousi, M. Alomairi, I. Maqsood Wajib; United Kingdom - P. Sleight (NC), A.A.J. Adgey, R. Andrews, S.G. Ball, D.H. Barer, A.H. Barnett, A.B. Bridges, V. Bryson, A.S. Cowie, A.J. De Belder, R. Donnelly, C.M. Francis, J. Furnace, S.K. Glen, N. Gough, A.M. Heagerty, P.R. Jackson, S.H.D. Jackson, E. Joyce, D.J. McEneaney, A.J. Moriarty, D.L. Murdoch, J.P. O'Hare, W.J. Penny, C.J. Reid, J. Tilley, J.P. Vora, J. Webster, B. Williams; United States - J. Probstfield (NC), M. Weber (NC), J. Young (NC), I. Ahmed, I.S. Anand, J.L. Anderson, J.S. Aponte Pagán, J. Barzilay, J.N. Basile, P.F. Bass III, S.S. Blumenthal, W.J. Bommer, D.F. Brautigam, C.D. Brown, N. Brown, J.D. Byrum, A.A. Carr, J. Chinn, D. Chiu, N.R. Cho, J.O. Ciocon, P.J. Colón-Ortíz, J.B. Cruz, W.D. Dachman, G.M. Dolson, S.G. Dorfman, W. Drummond, C. East, F. Eelani, H.S. Ellison, J.V. Felicetta, M.H. Fishbach, R.W. Force, S.J. Giddings, M.C. Goldberg, S. Goldman, R. Gomez Adrover, S.L. Goss, S.P. Graham, C.B. Granger, M.M. Greenspan, R.H. Grimm, G.B. Habib, M.R. Hagen, P.D. Hart, T.J. Hartney, M.A. Henriquez, J.J. Holland, B.J. Hoogwerf, M. Hossfeld, A.K. Jacobson, M.J. Jelley, T.V. Jones, R.A. Kaplan, D.G. Karalis, L.A. Katz, D.J. Kereiakes, M. Khan, R.M. Kipperman, M.J. Kozinn, J.G. Kozlowski, E.W. Lader, C. Landau, J.S. Landzberg, D. Laughrun, S.J. Lewis, C.S. Liang, M.C. Limacher, P.E. Linz, T.S. Lo, F. Lopez-Arostegui, R.R. Maddox, P.R. Mahrer, M.S. Maurer, D.K. McGuire, A.D. Mercando, J.H. Mersey, M. Meyer, A.N. Mooss, P. Narayan, S. Oparil, D.N. Padhiar, A.L. Phillips, M. Prisant, N. Qureshi, M.P. Raghuwanshi, R.R. Randall, T.M. Retta, R.E. Ringrose, A.A. Rizvi, M.D. Rizvi, M.G. Saklayen, S. Sastrasinh, I.K. Savani, A. Schlau, H.S. Schultz, M.J. Schweiger, R.D. Smith, M. Sosa-Padilla, D. Streja, T.P. Stuver, D.C. Subich, F.C. Sulak, W.A. Swagler III, M. Taitano, J.A. Tavarez-Valle, E.M. Taylor, M.L. Tuck, W.B. White, W.J. Wickemeyer, T.B. Wiegmann, P.A. Zee, X.Q. Zhao.

eMethods. Supplementary methods

Food frequency questionnaire

In the food frequency questionnaire participants were asked once at baseline how often they had consumed various food items per day, week, or month in the past 12 months. The food items were meat/poultry; fish; eggs; whole grains; refined/milled grains; dairy products; deep fried food/snacks/fast food; soy sauce, fish sauce; salt added to food/snacks; pickled vegetables; desserts/sweet snacks; sugar/sweeteners; tofu/soybean curd; legumes; nuts/seeds; fruits; fruit juices; leafy green vegetables; other raw vegetables, and other cooked vegetables. Examples for these food items are given in eTable 1.

Consumption of food items was recorded per day, week, or month. Before analysis, frequencies of consumption were converted to servings per week. All food items were truncated at the 95% percentile. Aggregate food variables were defined as the sum of various food items. Additionally, to the aggregate food variables described in the manuscript, we calculated:

- Salty foods $=$ soy sauce/fish sauce + salt added to food/snacks + pickled vegetables
- Sweet foods $=$ desserts/sweet snacks + sugar/sweeteners
- High fat content foods $=$ meat/poultry + fish + eggs + dairy products + deep fried food/snacks/fast food + desserts/sweet snacks

To estimate daily protein intake, we assigned a medium serving size to each food item and estimated protein intake from animal and plant sources. We defined animal proteins as an aggregate of meat/poultry + fish + eggs + dairy products and plant protein as an aggregate of tofu/soybean curd + legumes + whole grains + refined/milled grains. The conversion of intake in servings to gram per kg (body weight) and day ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$) was based on USDA United State Department of Agriculture Nutrient database (eTable 2). ${ }^{1}$

Calculation of mAHEI

With the food frequency questionnaire 8 of the 9 food items included in the AHEI were recorded. ${ }^{2-4}$ Of these, 5 variables were identical (vegetables, fruits, nuts and soy proteins, multivitamins, and alcohol intake) and 3 items were comparable (whole grains in place of cereal fiber, deep fried food in place of trans fats, and fish to meat and eggs ratio in place of white to red meat). Assuming each serving of whole grain contains 5 grams of fiber, we assigned 10 points for 3 or more servings of whole grains and zero points for zero intake. Conversely, for deep fried food/snacks/fast food the highest score was given for the lowest intake (10 points for ≤ 0.5 times/day; zero points for ≥ 4 times/day). The ratio of PUFA/SFA was excluded from the mAHEI as we were unable to compute the daily intake of these nutrients.

Estimated 24-hour potassium and sodium urinary excretion

At baseline 24 -hour potassium and sodium urinary excretion were estimated from a fasting morning urine sample as previously described. ${ }^{5}$ The Kawasaki formula was applied for the estimated 24 -hour urinary sodium and potassium. ${ }^{6}$

Study outcomes

The definition of new microalbuminuria or macroalbuminuria included an increase of at least 30% in UACR between baseline and 5 years' follow-up measurements. eTable 3 shows the change in the number of participants with new microalbuminuria or macroalbuminuria at the end of the study when the minimum increase in UACR between baseline and 5 years follow-up measurement would be $0 \%, 15 \%$, or 45%.

With the microalbuminuria and macroalbuminuria definition of a minimum increase in UACR of at least 30%, 979 (15.8%) participants were defined as alive with an incidence or progression of CKD. In case of no minimum increase in UACR, $994(16.0 \%)$ participants would have been defined as alive with incidence or progression of CKD.

Statistical analysis

In order to reduce the impact of possible outliers for all independent continuous variables, a 99% winsorization was applied.

All 3 sets of confounders were defined based on expert opinion. All 3 sets included Δ-UACR to progression ($\mathrm{dUACR}_{\mathrm{tp}}$), which was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and $U_{A C R}$ on the log-scale. $d U A C R_{t p}$ was defined as \log (cutoff point/ $\mathrm{UACR}_{\mathrm{b}}$), where cutoff point is the participant-specific cutoff point of development of microalbuminuria or macroalbuminuria:

$$
\begin{array}{lll}
\text { Cutoff point }= & 3.4 & \text { if } \mathrm{UACR}_{\mathrm{b}}<3.4 / 1.3 \\
& \mathrm{UACR}_{\mathrm{b}} * 1.3 & \text { if } 3.4 / 1.3 \leq \mathrm{UACR}_{\mathrm{b}}<3.4 \\
33.9 & \text { if } 3.4 \leq \mathrm{UACR}_{\mathrm{b}}<33.9 / 1.3 \\
& \mathrm{UACR}_{\mathrm{b}} * 1.3 & \text { if } \mathrm{UACR}_{\mathrm{b}} \geq 33.9 / 1.3
\end{array}
$$

Multinomial logit regression models were applied to identify odds ratios (ORs) and 95% confidence intervals (CIs) for the effects of diet variables on the 3 outcome states at the 5.5 -year follow-up status as dependent variable. The fractional polynomial approach was applied to model and describe nonlinear relationships for continuous independent variables. ${ }^{7}$ In this approach, transformations of independent variables are used to extend models with a linear outcome-risk factor dependency to allow for nonlinear associations. The key idea is that 1 or 2 simple transformations of type $x^{\text {power }}$ suffices to model nonlinear relationships typically encountered in medical applications, and thus powers can be selected from a predefined set of 8 numbers. Optimal powers for the fractional polynomials were chosen by the Akaike-Information-Criterion (AIC), which approximately corresponds to an $\alpha=0.157 .{ }^{8}$ The following algorithm was devised for this purpose:

1. Data preparation: Continuous variables are scaled.
2. Define visiting order: The full linear model is fitted and the visiting order for all continuous independent variables is determined according to the P value for omitting each independent variable from the model. The most significant continuous independent variable will be visited first.
3. Find optimal powers:
3.1. For the continuous independent variable with the smallest P value in step 2, find the best fractional polynomial power while all other continuous independent variables are included with a linear term in the model. Categorical independent variables are included in the models, as well. Models for all 44 combinations of powers are computed and the model with the smallest AIC is chosen. AIC is computed by $2 * k+1 * \mathrm{nFP} 1+2 * \mathrm{nFP} 2-2 * \log$-Likelihood, where k is the number of independent variables in the model, nFP 1 and nFP 2 are the number of independent variables with a fractional polynomial of order 1 and order 2, respectively.
3.2. For the independent variable with the second smallest P value, find the best fractional polynomial power, while the independent variable with the smallest P value uses the powers chosen in step 3.1., and all other continuous independent variables are included with a linear term. Categorical independent variables are included in the models, as well.
Repeat this step for all remaining continuous independent variables.
4. Repeat step 3 until the model stabilizes with regards to the chosen optimal powers. In each cycle use the optimal powers found in the previous cycle.

In this study, all models stabilized within 2 to 4 cycles.
Estimates of the multinomial logit models with the 3 sets of confounders are given in eTables 20-22.
eTable 1. Description of food items in the food frequency questionnaire
(These examples are not exhaustive.)

Food item	Food item includes			
Meat/poultry	Beef, pork, lamb, mutton, goat, veal, rabbit, chicken, turkey, duck, pheasant; their curries; Mexican meat soups/stews (menudo), liver, kidney, brain, spleen, heart and sausages			
Fish	Fresh-water and sea-water fish; preserved fish such as salted fish, canned fish, dried fish; shellfish and crustaceans (clams, squid, prawns, mollusks); caviar			
Eggs	Preserved eggs, duck eggs, thousand-year eggs			
Whole grains	Whole wheat flour; whole wheat chappati, cracked wheat; brown/wild rice; corn/hominy/masa harina/corn flour/maize, oats, old fashioned and Scotch/cracked groats; couscous; pot barley, brown rusk; whole wheat pasta, semolina			
Refined/milled grains	White flour; white flour chapati; white/polished/instant/ parboiled rice; jook or rice congee; pasta; noodles/ramen/somen; bulgur; pearl barley, sago; plain rusk; sheermal; taftan			
Dairy products	Milk, yogurt, cheese, curd, raita, lassi, custard, khoya, firni, kheer, milk puddings, and ice cream Does not add milk/cream to coffee, tea.			
Deep fried foods/snacks/fast food	French fries, potato chips, onion rings, samosas, papad, pakoras; sev; fried won ton, egg roll			
Soy sauce, fish sauces	Fish sauce, oyster sauce, tamari; fermented bean pastes (hoi sin); other salty sauces			
Salt added to food/salty snacks	Salt added in cooking and to food at the table and salty snacks such as chips, crackers etc.	,	Pickled vegetables	Pickled brine such as dill pickles, relishes; olives; salted cabbage or leafy greens (mui choi); mango pickle, lemon pickle; salted root vegetables (choi po); pickled eggs, pickled meat
:---	:---			
Desserts/sweet snacks	Jam; cakes; pies; chocolate; candy; burfi/ladoo; rasgulla/gulab jamun; halwa; shameia, mohalabeia, Chinese sweet buns; nor mei; sweet bean desserts, Coca-Cola and other soft drinks			
Sugar/sweetener	use of white sugar, brown sugar, corn syrup, honey, molasses, maple syrup, treacle			
Tofu/soybean curd	Textured vegetable protein, soy milk			
Legumes	Dried beans, lentils, peas, daals; soups (split pea)			
Nuts/seeds	Peanuts, almonds, sunflower seeds, cashews, walnuts			
Fruits	All fruits			
Fruit juices	All fruits juices			
Leafy green vegetables	All fresh leafy green vegetables: spinach, bok choi; choi sum, collards, mustard or turnip greens; asparagus			
Other raw vegetables	Any raw vegetables not included in the preceding category			
Other cooked vegetables	Any cooked vegetables not included in the preceding categories			

eTable 2. Assumed protein content per serving size and conversion between servings and gram based on USDA United State Department of Agriculture National Nutrient database for standard reference.

Food	Portion size	Gram protein	
Red and white meat	100 g	28.87	
Egg (01128)	46 g	6.29	
Fish (15237)	1 filet $=154 \mathrm{~g}$	39.18	
Dairy	1 cup	7.86	
Legumes	1 cup	15.35	
Tofu	28.35 g	4.87	
Whole wheat bread (18075)	1 slice $(28 \mathrm{~g})$	3.63	
White bread (18069)	1 slice $(28 \mathrm{~g})$	2.56	
Aggregate variables given in gram	consisting of		
Animal protein (g)	(meat/poultry $* 28.87)+($ fish $* 39.18)+($ eggs $* 6.29)+$ (dairy products * 7.86)		
Plant protein (g)	(legumes 15.35$)+$ (tofu/soybean curd $* 4.87)+$ (whole grains $* 3.63)+($ refined $/ \mathrm{milled}$ grains $* 2.56)$		
Total protein (g)	animal protein $(\mathrm{g})+$ plant protein (g)		

(Release 18; http://www.ars.usda.gov/Services/docs.htm?docid=13747; Accessed June 24, 2013)
eTable 3. Changes in the number of participants with new microalbuminuria or macroalbuminuria at study end when the minimum increase in UACR between baseline and 5 years' follow-up measurement is changed.

Minimum Increase in UACR	Participants with	
	New Microalbuminuria	New Macroalbuminuria
0%	688	306
15%	684	305
$\mathbf{3 0 \%}$	$\mathbf{6 7 8}$	$\mathbf{3 0 1}$
45%	668	300

eTable 4. Clinical and nutrition characteristics of participants with type 2 diabetes mellitus separated by the 3 outcome states at 5.5 years of follow-up.

Median, first, and third quartiles (IQR) or frequencies and percentages are given.

Characteristics at Baseline	Participants Alive With				Participants Who Died, n=516		P Value
	No Renal Event, n=3726		A Renal Event, n=1971				
	$\mathrm{n}_{\mathrm{a}}{ }^{1}$	$\begin{gathered} \text { Median (IQR) or } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	$\mathrm{n}_{\mathrm{a}}{ }^{1}$	$\begin{gathered} \hline \text { Median (IQR) or } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	na^{1}	$\begin{gathered} \text { Median (IQR) or } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	
ETHNIC GROUP	3726		1971		516		. 86
Caucasian		2546 (68.3)		1316 (66.7)		357 (69.2)	
Arab, Persian		43 (1.2)		29 (1.5)		7 (1.4)	
Asian		655 (17.68)		354 (18.0)		87 (16.8)	
African		103 (2.8)		66 (3.4)		12 (2.3)	
Native Latin		340 (9.1)		182 (9.2)		45 (8.7)	
Other		39 (1.0)		24 (1.2)		8 (1.2)	
DIETARY CHARACTERISTICS							
Food consumed (yes)							
Alcohol	3725	1303 (35.0)	1970	575 (30.0)	516	147 (28.5)	<. 001
Animal proteins	3718	3718 (100.0)	1963	1963 (100.0)	514	514 (100.0)	-
Salty foods	3717	2814 (75.7)	1964	1454 (74.0)	514	379 (73.7)	. 30
Sweet foods	3714	2784 (75.0)	1962	1470 (74.9)	514	385 (74.9)	. 99
High-carbohydrate foods	3714	3486 (93.9)	1961	1852 (94.4)	514	491 (95.5)	. 27
High-fat content foods	3714	3714 (100.0)	1962	1962 (100.0)	514	514 (100.0)	-
Fruits \& fruit juices	3716	3637 (97.9)	1963	1915 (97.6)	514	500 (97.3)	. 58
Vegetables	3716	3675 (98.9)	1955	1927 (98.6)	515	507 (98.5)	. 46
Meat/poultry	3721	3646 (98.0)	1965	1920 (97.7)	515	509 (98.8)	. 27
Fish	3721	3440 (92.5)	1965	1789 (91.0)	515	467 (90.7)	. 11
Eggs	3721	3203 (86.1)	1963	1688 (86.0)	515	444 (86.2)	. 99
Whole grains	3718	2854 (76.8)	1964	1458 (74.2)	514	381 (74.1)	. 07
Refined/milled grains	3719	2958 (79.5)	1963	1545 (78.7)	514	420 (81.7)	. 32
Dairy products	3719	3272 (88.0)	1964	1700 (86.6)	514	451 (87.7)	. 30
Soy sauce/fish sauce	3719	1281 (34.4)	1964	625 (31.8)	514	151 (29.4)	. 02
Salt added to food/salty snacks	3718	1724 (46.4)	1965	911 (46.4)	514	236 (45.9)	. 98
Pickled vegetables	3718	1851 (49.8)	1964	970 (49.4)	514	227 (44.2)	. 06
Tofu/soybean curd	3719	775 (20.8)	1965	372 (18.9)	514	78 (15.2)	. 006
Nuts/seeds	3717	1836 (49.4)	1965	890 (45.3)	514	223 (43.4)	. 002
Fruits	3718	3621 (97.4)	1964	1903 (96.9)	515	496 (96.3)	. 28
Fruit juices	3719	1950 (52.4)	1964	992 (50.5)	514	270 (52.5)	. 37
Leafy green vegetables	3717	3525 (94.8)	1962	1832 (93.4)	515	473 (91.8)	. 006
Other raw vegetables	3715	2779 (74.8)	1963	1458 (74.3)	515	357 (69.3)	. 03
Other cooked vegetables	3718	3369 (90.6)	1964	1790 (91.1)	515	470 (91.3)	. 76
In number of servings per week							
Animal proteins	3718	15 (10.23-21)	1963	14.23 (10-20.46)	514	15 (10.29-21)	. 02
Plant proteins	3715	14 (7-21)	1963	14 (7-18.23)	514	14 (7.23-19)	. 22
Total proteins	3714	28.23 (20.46-38)	1962	27.46 (19.86-36.21)	514	28.46 (20.46-37.23)	. 01
Salty foods	3717	1.46 (0.23-6)	1964	1.46 (0-5.46)	514	1.46 (0-5)	. 45
Sweet foods	3714	3 (0-10)	1962	3 (0-9)	514	3 (0.06-14)	. 78
High-fat content foods	3714	17 (11.92-23.23)	1962	16 (11-22.46)	514	17.15 (11.75-23.98)	. 009
Meat/poultry	3721	5 (3-7)	1965	4 (2-7)	515	5 (3-7)	. 15
Fish	3721	1 (0.92-2)	1965	1 (0.46-2)	515	1 (0.69-2)	<. 001
Eggs	3721	1 (0.46-2)	1963	1 (0.46-2)	515	1 (0.46-3)	. 30
Whole grains	3718	6 (0.23-14)	1964	4 (0-7)	514	4 (0-12.25)	. 015
Refined/milled grains	3719	2 (0.46-7)	1963	2 (0.23-7)	514	3 (0.92-7)	. 19
Dairy products	3719	7 (2-7)	1964	7 (2-7)	514	7 (2-7)	. 05
Deep fried food/snacks/fast food	3720	0 (0-1)	1965	0 (0-1)	515	0 (0-1)	. 71
Soy sauce/fish sauce	3719	0 (0-0.46)	1964	0 (0-0.46)	514	0 (0-0.4)	. 035
Salt added to food/salty snacks	3718	0 (0-1)	1965	0 (0-1)	514	0 (0-1)	. 94
Pickled vegetables	3718	0 (0-1)	1964	0 (0-1)	514	0 (0-1)	. 07
Tofu/soybean curd	3719	0 (0-0)	1965	0 (0-0)	514	0 (0-0)	. 004
Nuts/seeds	3717	0 (0-1)	1965	0 (0-1)	514	0 (0-0.46)	<. 001
Fruits	3718	7 (4-14)	1964	7 (4-14)	515	7 (3-14)	<. 001
Fruit juices	3719	0.23 (0-3)	1964	0.23 (0-3)	514	0.46 (0-4)	. 267
Leafy green vegetables	3721	4 (2-7)	1956	4 (2-7)	515	3 (2-7)	. 004
Other raw vegetables	3719	2 (0-5)	1957	2 (0-4)	515	1 (0-4)	<. 001
Other cooked vegetables	3722	3 (1-7)	1958	3 (1-7)	515	3 (1-7)	. 72

n_{a} number of participants with available data; BMI body mass index.
eTable 5. Distribution of the 3 outcome states at 5.5 years of follow-up separated by normoalbuminuria and microalbuminuria at baseline

Outcome State	At Baseline Participants With		All Participants
	Mormoalbuminuria $\mathrm{n}(\%)$	Microalbuminuria $\mathrm{n}(\%)$	
	$3059(62.45 \%)$	$667(50.72 \%)$	$3726(59.97 \%)$
Alive and no incidence or progression of CKD	$1499(30.60 \%)$	$472(35.89 \%)$	$1971(31.72 \%)$
Alive and incidence or progression of CKD	$340(6.94 \%)$	$176(13.38 \%)$	$516(8.31 \%)$
Death	$4898(78.83 \%)$	$1315(21.17 \%)$	$6213(100 \%)$
Sum			

Absolute number (percentage).
eTable 6. Comparison of albuminuria (UACR) and GFR-decline renal events.

		GFR Renal Event			
		Alive With No GFR Event	Alive With GFR Event	Death	Sum
Albuminuria Renal Event	Alive With No UACR Event	$3726(60.0 \%)$	$978(15.74 \%)$	$0(0.0 \%)$	$4427(75.9 \%)$
	Alive With UACR Event	$701(11.3 \%)$	$292(4.70 \%)$	$0(0.0 \%)$	$1270(15.8 \%)$
	Death	$0(0.0 \%)$	$0(0 \%)$	$516(8.3 \%)$	$516(8.3 \%)$
	Sum	$4427(71.3 \%)$	$1270(20.44 \%)$	$516(8.3 \%)$	$6213(100.0 \%)$

Absolute number (percentage).
eTable 7. Combined renal outcome: single-variable models adjusted with known confounders

Continuous Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.875 (0.816-0.938)	0.735 (0.642-0.843)	0.906 (0.793-1.035)	0.612 (0.482-0.778)	17.92	24.65	33.26	<. 0001
24-hour urinary sodium (g)	0.949 (0.890-1.012)	0.929 (0.834-1.034)	0.907 (0.821-1.003)	0.949 (0.800-1.127)	3.46	4.89	6.41	. 0540
24-hour urinary potassium (g)	0.902 (0.859-0.947)	0.786 (0.701-0.881)	0.931 (0.856-1.012)	0.846 (0.695-1.029)	1.7	2.13	2.71	. 0007
Alcohol (drinks/week)		0.731 (0.630-0.847)		0.683 (0.531-0.879)		0	5	. 0001
Animal proteins (g/kg/d)	0.951 (0.916-0.987)	0.871 (0.788-0.964)	0.993 (0.935-1.054)	0.980 (0.831-1.156)	0.27	0.47	0.81	. 0396
Plant proteins (g/kg/d)	0.961 (0.926-0.997)	0.896 (0.809-0.992)	0.968 (0.908-1.032)	0.914 (0.766-1.090)	0.04	0.1	0.2	. 0909
Total proteins (g/kg/d)	0.944 (0.909-0.981)	0.856 (0.773-0.949)	0.986 (0.927-1.048)	0.961 (0.814-1.136)	0.36	0.58	0.96	. 0161
Animal proteins (servings/week)	0.936 (0.892-0.983)	0.863 (0.775-0.962)	0.968 (0.893-1.050)	0.930 (0.777-1.114)	8.46	15	23	. 0759
Plant proteins (servings/week)	0.977 (0.963-0.991)	0.912 (0.862-0.964)	0.984 (0.961-1.007)	0.937 (0.853-1.029)	4.69	14	22	. 0105
Total proteins (servings/week)	0.965 (0.946-0.983)	0.863 (0.798-0.933)	0.978 (0.947-1.009)	0.912 (0.801-1.037)	17.23	28	42	. 0028
Salty foods	0.926 (0.630-1.361)	0.692 (0.109-4.379)	0.859 (0.446-1.654)	0.484 (0.021-11.169)	0	1.46	7	. 8116
Sweet foods	0.977 (0.511-1.868)	0.895 (0.041-19.399)	1.175 (0.397-3.479)	2.153 (0.013-369.869)	0	3	14.23	. 7761
High-carbohydrate foods	1.031 (1.007-1.056)	1.142 (1.004-1.300)	1.027 (0.988-1.068)	1.155 (0.932-1.431)	2	9	21.46	. 0325
High-fat content foods	0.931 (0.886-0.978)	0.852 (0.764-0.951)	0.973 (0.897-1.057)	0.942 (0.784-1.131)	9.69	17	26	. 0348
Fruits and fruit juices	0.927 (0.882-0.974)	0.843 (0.755-0.942)	0.858 (0.790-0.932)	0.709 (0.588-0.854)	4	9	18	. 0003
Vegetables	0.943 (0.898-0.991)	0.899 (0.822-0.983)	0.882 (0.819-0.951)	0.796 (0.694-0.913)	5	11	21	. 0052
Meat/poultry	0.987 (0.958-1.018)	0.984 (0.946-1.023)	1.049 (0.986-1.116)	1.063 (0.983-1.150)	2	5	7	. 1436
Fish	0.931 (0.896-0.967)	0.75 (0.646-0.870)	0.960 (0.901-1.024)	0.846 (0.658-1.088)	0.46	1	3	. 0036
Eggs	1.044 (0.876-1.243)	1.166 (0.621-2.188)	1.196 (0.898-1.593)	1.905 (0.679-5.344)	0.23	1	3	. 3274
Whole grains	0.943 (0.903-0.986)	0.850 (0.752-0.960)	0.962 (0.893-1.036)	0.897 (0.729-1.104)	0	5	14	. 0747
Refined/milled grains	0.950 (0.826-1.092)	0.975 (0.844-1.128)	1.150 (0.899-1.470)	1.270 (0.985-1.638)	0	2	14	. 0737
Dairy products	0.874 (0.805-0.948)	0.754 (0.635-0.894)	0.985 (0.860-1.128)	0.910 (0.686-1.208)	1	7	14	. 0131
Deep fried food/snacks/fast food		1.073 (0.825-1.395)		1.378 (0.899-2.111)		0	1	. 6174
Soy sauce/fish sauce		0.857 (0.764-0.961)		0.788 (0.641-0.970)		0	1	. 0300
Salt added to food/salty snacks		1.034 (0.569-1.881)		1.268 (0.470-3.418)		0	3	. 3935
Pickled vegetables		0.905 (0.556-1.470)		0.473 (0.193-1.156)		0	2	. 2916
Tofu/soybean curd		0.975 (0.944-1.006)		0.943 (0.888-1.002)		0	0.46	. 1156
Nuts/seeds		0.893 (0.838-0.952)		0.821 (0.728-0.927)		0	2	. 0003
Fruits	0.951 (0.916-0.988)	0.871 (0.784-0.968)	0.875 (0.818-0.936)	0.693 (0.576-0.834)	3	7	14	. 0001
Fruit juices	0.979 (0.943-1.016)	0.521 (0.167-1.628)	1.002 (0.942-1.066)	1.053 (0.160-6.913)	0	0.23	7	. 2327
Leafy green vegetables	0.928 (0.875-0.984)	0.899 (0.827-0.978)	0.875 (0.796-0.962)	0.828 (0.723-0.947)	1	4	7	. 0147
Other raw vegetables	1.011 (0.885-1.154)	0.892 (0.772-1.032)	0.826 (0.668-1.022)	0.700 (0.551-0.890)	0	2	7	. 0029
Other cooked vegetables	0.979 (0.632-1.514)	0.937 (0.253-3.472)	0.696 (0.329-1.472)	0.337 (0.036-3.190)	1	3	7	. 5051
Binary Independent Variables	$\mathbf{O R}_{\text {renal }}$ YESvsNO		$\mathbf{O R}_{\text {death }}$ YESvsNO		Categories			P Value
Salty foods	0.946 (0.830-1.077)		0.979 (0.788-1.217)		no	yes (75.0		. 7001
Sweet foods	1.007 (0.885-1.147)		0.988 (0.793-1.229)		no	yes (74.8\%		. 9842

Food items are given in servings per week or as binary variables indicating the food item was typically consumed or not. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD; OR death compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2nd and 3rd tertile (50.0th and 83.3rd percentiles) compared to the median of the 1st tertile (16.7th percentile) as reference are given. For binary independent variables "no" is the reference category. Independent variables in bold have a significant association with incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. Confounders (at study entry) are age, duration of diabetes, GFR, status of albuminuria, sex, ONTARGET randomization arms and Δ-UACR to progression, which was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and UACR at baseline on the log-scale. Association of selected variables and relative odds for incidence or progression of CKD is visualized in eFigure 1.

eTable 8. Combined renal outcome: multivariable model adjusted with known confounders

Independent variables	$\mathbf{O R}$ renal 2 Vs 1	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.752 (0.647-0.874)		0.689 (0.532-0.891)		0	5	. 0009
Animal proteins (g/kg/d)	0.946 (0.909-0.984)	0.859 (0.771-0.957)	1.000 (0.938-1.067)	1.001 (0.839-1.194)	0.27	0.47	0.81	. 0319
Plant proteins (g/kg/d)	0.962 (0.925-1.000)	0.898 (0.806-1.000)	0.969 (0.906-1.037)	0.916 (0.761-1.104)	0.04	0.1	0.2	. 1265
High-carbohydrate foods	1.031 (1.007-1.057)	1.153 (1.011-1.315)	1.029 (0.989-1.070)	1.170 (0.942-1.454)	2	9	21.34	. 0582
Deep fried food/snacks/fast food	1.041 (0.928-1.168)		1.070 (0.882-1.298)		no	yes (46.93\%)		. 6855
Fruits and fruit juices	0.953 (0.912-0.996)	0.914 (0.842-0.992)	0.902 (0.841-0.967)	0.824 (0.724-0.939)	4	9	18	. 0127
Vegetables	0.97 (0.926-1.017)	0.923 (0.814-1.046)	0.898 (0.828-0.974)	0.751 (0.604-0.932)	5	11	21	. 0149
24-hour urinary sodium (g)	0.957 (0.892-1.028)	0.953 (0.848-1.071)	0.896 (0.800-1.003)	0.927 (0.768-1.12)	3.47	4.89	6.41	. 0711
24-hour urinary potassium (g)	0.897 (0.851-0.947)	0.777 (0.686-0.880)	0.944 (0.861-1.036)	0.875 (0.706-1.085)	1.7	2.13	2.71	. 0015

Alcohol is given in drinks/week; animal and plant proteins in grams per kg and day $(\mathrm{g} / \mathrm{kg} / \mathrm{d})$; and 24 -hour urinary potassium and sodium in grams. All other continuous independent variables are given in servings per week. Deep fried food/snacks/fast food is analyzed as a binary variable, because of heavy clustering of zeros and a small range. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD ; $\mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2 nd and 3 rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1 st tertile (16.7 th percentile) as reference are shown. For deep fried food/snacks/fast food "no" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. For confounders see eTable 7.
eTable 9. Combined renal outcome: single-variable models adjusted with the extended set of confounders 1

Continuous independent variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of tertile			P Value
					1	2	3	
mAHEI score	0.884 (0.824-0.948)	0.754 (0.657-0.866)	0.917 (0.801-1.049)	0.626 (0.491-0.798)	17.91	24.65	33.23	<. 0001
24-hour urinary sodium (g)	0.940 (0.876-1.008)	0.91 (0.813-1.019)	0.889 (0.795-0.994)	0.914 (0.762-1.096)	3.46	4.89	6.4	. 0381
24-hour urinary potassium (g)	0.891 (0.847-0.938)	0.764 (0.679-0.861)	0.926 (0.848-1.011)	0.835 (0.681-1.026)	1.7	2.13	2.71	. 0002
Alcohol (drinks/week)		0.721 (0.621-0.837)		0.681 (0.528-0.879)		0	5	. 0001
Animal proteins (g/kg/d)	0.958 (0.921-0.997)	0.891 (0.799-0.992)	0.994 (0.931-1.061)	0.984 (0.824-1.174)	0.27	0.47	0.81	. 1059
Plant proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$)	0.973 (0.935-1.012)	0.926 (0.830-1.033)	0.973 (0.909-1.041)	0.927 (0.768-1.118)	0.04	0.1	0.2	. 1344
Total proteins (g/kg/d)	0.952 (0.913-0.992)	0.875 (0.782-0.979)	0.987 (0.922-1.057)	0.967 (0.804-1.162)	0.36	0.58	0.96	. 0629
Animal proteins (servings/week)	0.938 (0.893-0.985)	0.868 (0.778-0.968)	0.957 (0.881-1.039)	0.907 (0.755-1.089)	8.46	15	23	. 0918
Plant proteins (servings/week)	0.980 (0.966-0.994)	0.924 (0.873-0.977)	0.985 (0.962-1.009)	0.943 (0.858-1.038)	4.69	14	22	. 0374
Total proteins (servings/week)	0.931 (0.886-0.979)	0.849 (0.758-0.951)	0.964 (0.887-1.048)	0.919 (0.759-1.114)	17.23	28	42	. 0165
Salty foods	1.088 (0.735-1.611)	1.499 (0.229-9.821)	0.966 (0.496-1.882)	0.847 (0.035-20.705)	0	1.46	7	. 8030
Sweet foods	0.928 (0.481-1.790)	0.702 (0.031-15.838)	1.324 (0.443-3.959)	3.782 (0.021-683.20)	0	3	14.23	. 5445
High-carbohydrate foods	1.032 (1.008-1.058)	1.152 (1.011-1.313)	1.032 (0.992-1.073)	1.185 (0.954-1.471)	2	9	21.46	. 0300
High-fat content foods	0.933 (0.887-0.980)	0.856 (0.766-0.957)	0.965 (0.887-1.049)	0.923 (0.766-1.112)	9.66	17	26	. 0454
Fruits and fruit juices	0.923 (0.878-0.970)	0.843 (0.758-0.937)	0.858 (0.789-0.933)	0.722 (0.604-0.864)	4	9	17	. 0003
Vegetables	0.951 (0.905-1.000)	0.913 (0.834-1.000)	0.891 (0.825-0.961)	0.809 (0.704-0.930)	5	11	21	. 0101
Meat/poultry	0.988 (0.964-1.012)	0.981 (0.943-1.020)	1.039 (0.989-1.091)	1.063 (0.983-1.150)	2	4	7	. 0922
Fish	0.946 (0.917-0.976)	0.751 (0.642-0.879)	0.971 (0.922-1.024)	0.852 (0.653-1.112)	0.46	1	3	. 0091
Eggs	1.075 (0.900-1.283)	1.297 (0.686-2.453)	1.189 (0.890-1.590)	1.867 (0.656-5.310)	0.23	1	3	. 2522
Whole grains	0.948 (0.907-0.990)	0.860 (0.760-0.973)	0.965 (0.896-1.040)	0.906 (0.734-1.117)	0	5	14	. 1429
Refined/milled grains	0.962 (0.836-1.108)	0.991 (0.856-1.147)	1.154 (0.900-1.479)	1.287 (0.995-1.664)	0	2	14	. 0557
Dairy products	0.871 (0.802-0.945)	0.749 (0.630-0.890)	0.977 (0.851-1.121)	0.884 (0.664-1.177)	1	7	14	. 0088
Deep fried food/snacks/fast food		1.065 (0.816-1.389)		1.397 (0.907-2.152)		0	1	. 5664
Soy sauce/fish sauce		0.872 (0.768-0.990)		0.790 (0.628-0.992)		0	1	. 0435
Salt added to food/salty snacks		1. (0.637-2.132)		1.444 (0.531-3.925)		0	3	. 4299
Pickled vegetables		0.890 (165 0.545-1.455)		0.445 (0.179-1.107)		0	2	. 2588
Tofu/soybean curd		0.959 (0.840-1.096)		0.816 (0.635-1.047)		0	0.46	. 2531
Nuts/seeds		0.896 (0.840-0.956)		0.828 (0.733-0.935)		0	2	. 0006
Fruits	0.951 (0.915-0.988)	0.870 (0.782-0.967)	0.882 (0.824-0.944)	0.708 (0.587-0.854)	3	7	14	. 0002
Fruit juices	0.975 (0.939-1.013)	0.464 (0.146-1.475)	0.993 (0.932-1.058)	0.814 (0.119-5.560)	0	0.23	7	. 1921
Leafy green vegetables	0.977 (0.939-1.016)	0.955 (0.882-1.033)	0.928 (0.866-0.993)	0.860 (0.750-0.987)		4	7	. 0449
Other raw vegetables	0.951 (0.911-0.992)	0.838 (0.721-0.974)	0.908 (0.842-0.979)	0.713 (0.548-0.927)	0	2	7	. 0058
Other cooked vegetables	1.015 (0.653-1.578)	1.047 (0.279-3.93)	0.678 (0.318-1.448)	0.312 (0.032-3.038)	1	3	7	. 4462
Binary Independent Variables	$\mathbf{O R}_{\text {renal }} \mathrm{YESvsNO}$		$\mathbf{O R}_{\text {death }}$ YESvsNO		Categories			P Value
Salty foods	0.962 (0.844-1.096)		0.993 (0.797-1.237)		no	yes (75.00)		. 8415
Sweet foods	0.984 (0.862-1.123)		0.984 (0.787-1.230)		no	yes (74.7)		. 9665
High-carbohydrate foods	1.119 (0.877-1.427)		1.446 (0.915-2.283)		no	yes (94.1)		. 2186

Food items are given in servings per week or as binary variables indicating the food item was typically consumed or not. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD; $\mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2nd and 3rd tertile (50.0th and 83.3rd percentiles) compared to the median of the 1 st tertile (16.7th percentile) as reference are given. For binary independent variables "no" is the reference category. Independent variables in bold have a significant association with incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. Confounders (at study entry) are age, duration of diabetes, GFR, albuminuria status, sex, ONTARGET randomization arms and Δ-UACR to progression, which was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and UACR at baseline on the log-scale, body mass index, mean arterial blood pressure, glucose, and previous ACEI/ARBs.
eTable 10. Combined renal outcome: multivariable model adjusted with the extended set of confounders 1

Independent variables	$\mathbf{O R}$ renal 2 vs 1	$\mathrm{OR}_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.747 (0.641-0.870)		0.696 (0.536-0.903)		0	5	. 0009
Animal proteins (g/kg/d)	0.953 (0.915-0.994)	0.878 (0.784-0.984)	1.002 (0.936-1.073)	1.006 (0.835-1.21)	0.27	0.47	0.81	. 0924
Plant proteins (g/kg/d)	0.973 (0.934-1.013)	0.926 (0.827-1.037)	0.976 (0.909-1.047)	0.935 (0.769-1.136)	0.04	0.1	0.2	. 3839
High-carbohydrates foods	1.032 (1.007-1.058)	1.157 (1.012-1.323)	1.032 (0.992-1.074)	1.195 (0.958-1.491)	2	9	21.46	. 0470
Deep fried food/snacks/fast food	1.040 (0.925-1.168)		1.075 (0.884-1.308)		no	yes (46.90\%)		. 6799
Fruits and fruit juices	0.948 (0.907-0.992)	0.907 (0.835-0.985)	0.899 (0.837-0.965)	0.821 (0.719-0.936)	4	9	17.82	. 0100
Vegetables	0.977 (0.931-1.024)	0.939 (0.827-1.066)	0.899 (0.828-0.977)	0.754 (0.605-0.939)	5	11	21	. 0206
24-hour urinary sodium (g)	0.954 (0.887-1.025)	0.947 (0.841-1.066)	0.897 (0.800-1.006)	0.936 (0.773-1.133)	3.46	4.89	6.4	. 0541
24-hour urinary potassium (g)	0.899 (0.851-0.949)	0.780 (0.687-0.886)	0.942 (0.857-1.035)	0.869 (0.697-1.083)	1.7	2.13	2.71	. 0026

Alcohol is given in drinks/week; animal and plant proteins in grams per kg and day $(\mathrm{g} / \mathrm{kg} / \mathrm{d})$; and 24 -hour urinary potassium and sodium in grams. All other continuous independent variables are given in servings per week. Deep fried food/snacks/fast food is analyzed as a binary variable, because of heavy clustering of zeros and a small range. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of $\mathrm{CKD} ; \mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2 nd and 3rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1st tertile (16.7th percentile) as reference are shown. For deep fried food/snacks/fast food "no" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. For confounders see eTable 9.
eTable 11. Combined renal outcome: single-variable models adjusted with the extended set of confounders 2

Continuous independent variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}$ death 3 vs 1	Median of tertile			P Value
					1	2	3	
mAHEI score	0.894 (0.833-0.960)	0.777 (0.675-0.894)	0.921 (0.803-1.055)	0.630 (0.492-0.807)	17.91	24.65	33.23	<. 0001
24-hour urinary sodium (g)	0.948 (0.887-1.012)	0.927 (0.830-1.036)	0.918 (0.828-1.018)	0.983 (0.823-1.173)	3.46	4.89	6.4	. 0374
24-hour urinary potassium (g)	0.895 (0.850-0.941)	0.771 (0.684-0.869)	0.929 (0.85-1.014)	0.841 (0.685-1.034)	1.7	2.13	2.71	. 0004
Alcohol (drinks/week)		0.729 (0.627-0.847)		0.660 (0.510-0.853)	0	0	5	. 0001
Animal proteins (g/kg/d)	0.965 (0.927-1.005)	0.908 (0.814-1.012)	1.001 (0.937-1.070)	1.003 (0.838-1.200)	0.27	0.47	0.81	. 1542
Plant proteins (g/kg/d)	0.972 (0.935-1.011)	0.925 (0.829-1.032)	0.979 (0.916-1.048)	0.944 (0.782-1.139)	0.04	0.1	0.2	. 1358
Total proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$)	0.958 (0.918-0.999)	0.89 (0.795-0.996)	0.996 (0.929-1.067)	0.988 (0.821-1.191)	0.36	0.58	0.96	. 1029
Animal proteins (servings/week)	0.126 (0.017-0.922)	0.010 (0.000-0.835)	0.206 (0.007-5.857)	0.030 (0.00-50.902)	8.46	15	23	. 2223
Plant proteins (servings/week)	0.981 (0.967-0.995)	0.927 (0.876-0.981)	0.987 (0.964-1.011)	0.950 (0.864-1.046)	4.69	14	22	. 0457
Total proteins (servings/week)	0.94 (0.895-0.989)	0.868 (0.774-0.974)	0.973 (0.894-1.059)	0.939 (0.774-1.140)	17.23	28	42	. 0407
Salty foods	1.168 (0.786-1.736)	2.107 (0.315-14.091)	1.029 (0.523-2.025)	1.147 (0.045-29.467)	0	1.46	7	. 7048
Sweet foods	0.892 (0.46-1.727)	0.581 (0.025-13.37)	1.074 (0.356-3.236)	1.403 (0.007-262.437)	0	3	14.23	. 5362
High-carbohydrate foods	1.031 (1.006-1.056)	1.141 (1.001-1.301)	1.029 (0.989-1.07)	1.162 (0.936-1.444)	2	9	21.46	. 0395
High-fat content foods	0.942 (0.895-0.991)	0.876 (0.783-0.981)	0.965 (0.886-1.052)	0.925 (0.765-1.118)	9.61	17	26	. 1099
Fruits and fruit juices	0.926 (0.88-0.973)	0.849 (0.763-0.944)	0.864 (0.794-0.940)	0.733 (0.613-0.877)	4	9	17	. 0006
Vegetables	0.976 (0.932-1.022)	0.938 (0.829-1.061)	0.912 (0.841-0.989)	0.782 (0.630-0.970)	5	11	21	. 0357
Meat/poultry	0.879 (0.568-1.360)	0.725 (0.244-2.157)	1.048 (0.506-2.173)	1.125 (0.182-6.959)	2	4	7	. 1668
Fish	0.949 (0.92-0.979)	0.762 (0.651-0.892)	0.974 (0.924-1.027)	0.865 (0.662-1.131)	0.46	1	3	. 0172
Eggs	1.108 (0.926-1.324)	1.444 (0.759-2.747)	1.209 (0.901-1.623)	1.980 (0.687-5.709)	0.23	1	3	. 2177
Whole grains	0.362 (0.136-0.964)	0.058 (0.004-0.902)	0.519 (0.099-2.739)	0.160 (0.002-16.801)	0	5	14	. 2877
Refined/milled grains	0.966 (0.839-1.112)	0.994 (0.858-1.152)	1.171 (0.912-1.503)	1.311 (1.013-1.698)	0	2	14	. 0420
Dairy products	0.882 (0.812-0.957)	0.77 (0.647-0.915)	0.992 (0.864-1.140)	0.907 (0.680-1.210)	1	7	14	. 0172
Deep fried food/snacks/fast food		1.088 (0.833-1.421)		1.375 (0.889-2.125)		0	1	. 5985
Soy sauce/fish sauce		0.906 (0.819-1.002)		0.840 (0.701-1.007)		0	1	. 0514
Salt added to food/salty snacks		1.279 (0.696-2.350)		1.479 (0.539-4.063)		0	3	. 3470
Pickled vegetables		0.933 (0.570-1.526)		0.468 (0.187-1.170)		0	2	. 2889
Tofu/soybean curd		0.976 (0.853-1.116)		0.848 (0.660-1.09)		0	0.46	. 4217
Nuts/seeds		0.910 (0.852-0.971)		0.828 (0.731-0.937)		0	2	. 0027
Fruits	0.953 (0.916-0.99)	0.875 (0.786-0.973)	0.886 (0.828-0.949)	0.717 (0.594-0.865)	3	7	14	. 0007
Fruit juices	0.977 (0.94-1.015)	0.494 (0.154-1.578)	0.993 (0.932-1.058)	0.802 (0.116-5.521)	0	0.23	7	. 2460
Leafy green vegetables	0.982 (0.943-1.022)	0.964 (0.890-1.044)	0.94 (0.877-1.007)	0.883 (0.768-1.014)	1	4	7	. 0904
Other raw vegetables	1.025 (0.895-1.175)	0.908 (0.783-1.053)	0.85 (0.682-1.059)	0.733 (0.573-0.938)	0	2	7	. 0099
Other cooked vegetables	1.111 (0.712-1.734)	1.372 (0.361-5.211)	0.741 (0.344-1.597)	0.407 (0.041-4.076)	1	3	7	. 5214
Binary Independent Variables	$\mathbf{O R}_{\text {renal }}$ YESvsNO		$\mathbf{O R}_{\text {death }}$ YESvsNO			tegori		
Salty foods	0.989 (0.867-1.129)		1.000 (0.800-1.250)		no	yes (. 9868

Food items are given in servings per week or as binary variables indicating the food item was typically consumed or not. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD; $\mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2nd and 3rd tertile (50.0th and 83.3rd percentiles) compared to the median of the 1st tertile (16.7th percentile) as reference are given. For binary independent variables "no" is the reference category. Independent variables in bold have a significant association with incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. Confounders (at study entry) are age, duration of diabetes, GFR, albuminuria status, sex, ONTARGET randomization arms, physical activity (mainly sedentary, <once a week, 2-6 times a week and every day), use of tobacco (never, formerly and current), school education (years of formal education: none, 1-8 years, $9-12$ years, trade/technical school, college/university) and Δ-UACR to progression, which was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria or macroalbuminuria and UACR at baseline on the log-scale, body mass index, mean arterial blood pressure, glucose and previous ACEI/ARBs.

eTable 12. Combined renal outcome: multivariable model adjusted with the extended set of confounders 2

Independent Variables	$\mathbf{O R}$ renal 2 vs 1	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
Independent Variables					1	2	3	
Alcohol (drinks/week)		0.755 (0.648-0.880)		0.672 (0.517-0.874)		0	5	. 0011
Animal proteins (g/kg/d)	0.959 (0.920-0.999)	0.891 (0.796-0.998)	1.005 (0.939-1.077)	1.015 (0.841-1.225)	0.27	0.47	0.81	1165
Plant proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$)	0.972 (0.933-1.012)	0.923 (0.824-1.034)	0.982 (0.915-1.053)	0.95 (0.781-1.155)	0.14	0.2	0.3	. 3747
High-carbohydrate foods	1.030 (1.005-1.056)	1.145 (1.001-1.309)	1.029 (0.989-1.071)	1.17 (0.938-1.461)	2	9	21.46	. 0652
Deep fried food/snacks/fast food	1.049 (0.933-1.179)		1.062 (0.872-1.295)		no	yes (47.0\%)		. 6670
Fruits and fruit juices	0.949 (0.908-0.993)	0.91 (0.839-0.987)	0.905 (0.843-0.972)	0.834 (0.733-0.949)	4	9	17.32	. 0160
Vegetables	0.984 (0.937-1.032)	0.957 (0.841-1.088)	0.909 (0.836-0.989)	0.776 (0.621-0.971)	5	11	21	. 0429
24-hour urinary sodium (g)	0.957 (0.890-1.029)	0.953 (0.847-1.074)	0.904 (0.805-1.015)	0.956 (0.788-1.159)	3.46	4.89	6.41	. 0484
24-hour urinary potassium (g)	0.902 (0.854-0.952)	0.785 (0.691-0.892)	0.941 (0.856-1.035)	0.868 (0.696-1.083)	1.7	2.13	2.71	. 0039

Alcohol is given in drinks/week; animal and plant proteins in grams per kg and day ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$); and 24 -hour urinary potassium and sodium in grams. All other continuous independent variables are given in servings per week. Deep fried food/snacks/fast food is analyzed as a binary variable, because of heavy clustering of zeros and a small range. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of $\mathrm{CKD} ; \mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period with participants alive with no incidence or progression of CKD. For continuous independent variable,s the ORs for the median of the 2 nd and 3 rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1 st tertile (16.7 th percentile) as reference are shown. For deep fried food/snacks/fast food "no" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD. A P value of inclusion of the respective variable into the model is given. For confounders see eTable 11.

eTable 13. Combined renal outcome: multivariable logistic model adjusted with known confounders

The 2-year UACR and GFR measurements were available from 5847 (94.11%) participants. Of these, participants, $40.90 \%(\mathrm{n}=2541)$ experienced incidence or progression of CKD, and no participant has died. A logistic regression model for the 2 possible outcome states at the 2 years follow-up (alive without renal event and alive with renal event) with all variables from the adjusted multivariable model (eTable 8) adjusted with known confounders was estimated to address the issue of competing risk of death.

Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {renal }} 3 \mathrm{vs} 1$	Median of Tertile		
			1	2	3
Alcohol (drinks/week)		0.944 (0.821-1.086)		0	5
Animal proteins (g/kg/d)	0.939 (0.905-0.974)	0.841 (0.760-0.930)	0.27	0.47	0.81
Plant proteins (g/kg/d)	1.007 (0.971-1.044)	1.019 (0.922-1.127)	0.14	0.2	0.3
High-carbohydrate foods	1.022 (1.000-1.045)	1.107 (0.981-1.249)	2	9	21.23
Deep fried food/snacks/fast food	1.035 (0.930-1.152)		no	yes (46.8\%)	
Fruits and fruit juices	1.006 (0.965-1.048)	1.011 (0.936-1.091)	4	9	19
Vegetables	0.965 (0.923-1.008)	0.909 (0.809-1.022)	5	11	21
24-hour urinary sodium (g)	0.980 (0.917-1.047)	0.957 (0.858-1.067)	3.48	4.90	6.42
24-hour urinary potassium (g)	0.944 (0.898-0.991)	0.873 (0.777-0.980)	1.7	2.13	2.71

Alcohol is given in drinks/week; animal and plant proteins in grams per kg and day; and 24-hour urinary potassium and sodium in grams. All other continuous independent variables are given in servings per week. Deep fried food/snacks/fast food is analyzed as a binary variable, because of heavy clustering of zeros and a small range. $\mathrm{OR}_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD; OR death compares participants who died within the follow-up period to participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2 nd and 3 rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1 st tertile (16.7 th percentile) as reference are shown. For deep fried food/snacks/fast food "no" is the reference category. For confounders see eTable 7.
eTable 14. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with known confounders

Independent Variable	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of tertile			P Value
					1	2	3	
mAHEI score	0.959 (0.927-0.991)	0.867 (0.775-0.971)	0.858 (0.812-0.906)	0.597 (0.496-0.718)	17.92	24.65	33.26	<. 001

Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} \mathbf{2 v s} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.777 (0.640-0.944)		0.729 (0.565-0.941)		0	5	. 0117
Animal proteins (g/kg/d)	0.968 (0.921-1.017)	0.915 (0.799-1.048)	1.015 (0.952-1.082)	1.042 (0.875-1.239)	0.27	0.47	0.81	. 3423
Plant proteins (g/kg/d)	1.004 (0.956-1.054)	1.011 (0.883-1.157)	0.984 (0.921-1.052)	0.957 (0.796-1.151)	0.14	0.2	0.3	. 8821
High-carbohydrate foods	1.022 (0.992-1.054)	1.117 (0.947-1.319)	1.022 (0.983-1.063)	1.139 (0.919-1.411)	2	9	21.34	. 1364
Deep fried food/snacks/fast food	0.898 (0.776-1.040)		1.031 (0.852-1.248)		no	yes (47.0\%)		. 2433
Fruits and fruit juices	0.945 (0.896-0.998)	0.900 (0.814-0.996)	0.908 (0.848-0.973)	0.836 (0.736-0.95)	4	9	18	. 0042
Vegetables	0.975 (0.918-1.035)	0.935 (0.797-1.097)	0.903 (0.834-0.979)	0.762 (0.615-0.945)	5	11	21	. 0499
24-hour urinary sodium (g)	0.973 (0.890-1.063)	0.969 (0.837-1.121)	0.906 (0.811-1.012)	0.94 (0.781-1.131)	3.47	4.89	6.41	. 1198
24-hour urinary potassium (g)	0.934 (0.872-1.00)	0.852 (0.726-0.999)	0.971 (0.887-1.064)	0.934 (0.755-1.155)	1.7	2.13	2.71	. 1607

eTable 15. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 1

Independent Variable	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.96 (0.928-0.993)	0.872 (0.779-0.977)	0.859 (0.812-0.908)	0.601 (0.499-0.723)	17.91	24.65	33.24	<. 0001

Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{Vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.770 (0.632-0.937)		0.737 (0.57-0.953)	0	0	5	. 0129
Animal proteins (g/kg/d)	0.972 (0.922-1.024)	0.925 (0.802-1.066)	1.014 (0.948-1.084)	1.039 (0.866-1.247)	0.27	0.47	0.81	. 4483
Plant proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$)	1.011 (0.960-1.064)	1.03 (0.893-1.187)	0.988 (0.922-1.060)	0.968 (0.798-1.174)	0.14	0.2	0.3	. 8721
High-carbohydrate foods	1.023 (0.992-1.055)	1.122 (0.948-1.328)	1.026 (0.986-1.067)	1.163 (0.935-1.445)	2	9	21.46	. 1115
Deep fried food/snacks/fast food	0.896 (0.772-1.040)		1.036 (0.854-1.257)		no	yes (47.0\%)		. 2385
Fruits and fruit juices	0.941 (0.891-0.995)	0.894 (0.808-0.990)	0.906 (0.845-0.972)	0.834 (0.733-0.948)	4	9	17.82	. 0037
Vegetables	0.984 (0.926-1.045)	0.957 (0.814-1.124)	0.905 (0.834-0.982)	0.766 (0.616-0.952)	5	11	21	. 0605
24-hour urinary sodium (g)	0.975 (0.891-1.066)	0.975 (0.841-1.13)	0.909 (0.813-1.017)	0.953 (0.79-1.150)	3.46	4.89	6.4	. 1000
24-hour urinary potassium (g)	0.935 (0.872-1.003)	0.856 (0.727-1.007)	0.967 (0.881-1.061)	0.925 (0.744-1.149)	1.7	2.13	2.71	. 1808

eTable 16. Albuminuria outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 2

Independent Variable	$\mathbf{O R}_{\text {renal }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.966 (0.934-1.000)	0.892 (0.795-1.001)	0.858 (0.811-0.908)	0.598 (0.495-0.723)	17.91	24.65	33.23	<.0001

Independent Variables	$\mathbf{O R}$ renal 2 vs 1	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.773 (0.634-0.943)		0.709 (0.547-0.918)		0	5	. 0122
Animal proteins (g/kg/d)	0.974 (0.925-1.026)	0.931 (0.807-1.074)	1.016 (0.95-1.087)	1.045 (0.868-1.257)	0.27	0.47	0.81	. 1206
Plant proteins (g/kg/d)	1.011 (0.961-1.064)	1.031 (0.894-1.188)	0.994 (0.928-1.066)	0.984 (0.811-1.195)	0.14	0.2	0.3	. 9243
High-carbohydrate foods	1.021 (0.990-1.053)	1.106 (0.934-1.31)	1.023 (0.983-1.064)	1.14 (0.916-1.419)	2	9	21.46	. 1279
Deep fried food/snacks/fast food	0.902 (0.777-1.047)		1.022 (0.841-1.241)		no	yes		. 2948
Fruits and fruit juices	0.946 (0.895-0.999)	0.904 (0.818-0.999)	0.913 (0.851-0.979)	0.848 (0.747-0.963)	4	9	17.32	. 0083
Vegetables	0.990 (0.932-1.053)	0.974 (0.828-1.147)	0.914 (0.841-0.992)	0.786 (0.63-0.98)	5	11	21	. 1170
24-hour urinary sodium (g)	0.980 (0.896-1.073)	0.986 (0.851-1.144)	0.917 (0.818-1.027)	0.973 (0.805-1.176)	3.46	4.89	6.41	. 0998
24-hour urinary potassium (g)	0.938 (0.875-1.006)	0.862 (0.732-1.015)	0.967 (0.881-1.062)	0.924 (0.743-1.15)	1.7	2.13	2.71	. 2255

eTable 17. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with known confounders

Independent Variable	OR ${ }_{\text {renal }}{ }^{2} \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.889 (0.822-0.962)	0.767 (0.658-0.895)	0.927 (0.813-1.057)	0.645 (0.509-0.817)	17.927	24.65	33.26	<. 0001

Independent Variables	$\mathbf{O R}_{\text {renal }} 2 \mathrm{Vs} 1$	$\mathrm{OR}_{\text {renal }} 3 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.809 (0.681-0.962)		0.74 (0.572-0.957)		0	5	. 0257
Animal proteins (g/kg/d)	0.961 (0.916-1.007)	0.897 (0.789-1.019)	1.012 (0.946-1.082)	1.033 (0.860-1.240)	0.27	0.47	0.81	. 0478
Plant proteins (g/kg/d)	0.956 (0.913-1.002)	0.884 (0.776-1.007)	0.975 (0.910-1.046)	0.933 (0.770-1.132)	0.14	0.2	0.3	. 1388
High-carbohydrate foods	1.045 (1.016-1.075)	1.250 (1.075-1.454)	1.03 (0.991-1.072)	1.190 (0.957-1.480)	2	9	21.46	. 0211
Deep fried food/snacks/fast food	1.134 (0.995-1.293)		1.091 (0.900-1.324)		no	yes (46.9\%)		. 1524
Fruits and fruit juices	0.971 (0.923-1.021)	0.947 (0.863-1.040)	0.911 (0.85-0.977)	0.841 (0.740-0.957)	4	9	17.82	. 0700
Vegetables	0.978 (0.926-1.032)	0.941 (0.815-1.087)	0.903 (0.832-0.98)	0.762 (0.613-0.947)	5	11	21	. 0332
24-hour urinary sodium (g)	1.004 (0.926-1.089)	1.029 (0.901-1.176)	0.915 (0.818-1.023)	0.964 (0.799-1.163)	3.46	4.89	6.4	. 0795
24-hour urinary potassium (g)	0.886 (0.832-0.943)	0.754 (0.652-0.871)	0.953 (0.868-1.046)	0.893 (0.718-1.110)	1.7	2.13	2.71	. 0005

eTable 18. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 1

Independent Variable	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.899 (0.83-0.973)	0.787 (0.673-0.919)	0.939 (0.821-1.073)	0.659 (0.519-0.838)	17.911	24.649	33.235	<. 0001

Independent Variables	$\mathbf{O R}$ renal 2 vs 1	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	OR ${ }_{\text {death }} 2 \mathrm{vs} 1$	OR ${ }_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.809 (0.681-0.962)		0.740 (0.572-0.957)	0	0	5	. 0257
Animal proteins (g/kg/d)	0.961 (0.916-1.007)	0.897 (0.789-1.019)	1.012 (0.946-1.082)	1.033 (0.86-1.24)	0.27	0.47	0.81	. 0478
Plant proteins (g/kg/d)	0.956 (0.913-1.002)	0.884 (0.776-1.007)	0.975 (0.910-1.046)	0.933 (0.770-1.132)	0.14	0.2	0.3	. 1388
High-carbohydrate foods	1.045 (1.016-1.075)	1.250 (1.075-1.454)	1.030 (0.991-1.072)	1.190 (0.957-1.48)	2	9	21.46	. 0211
Deep fried food/snacks/fast food	1.134 (0.995-1.293)		1.091 (0.900-1.324)		no	yes (46.9\%)		. 1524
Fruits and fruit juices	0.971 (0.923-1.021)	0.947 (0.863-1.040)	0.911 (0.850-0.977)	0.841 (0.740-0.957)	4	9	17.82	. 0700
Vegetables	0.978 (0.926-1.032)	0.941 (0.815-1.087)	0.903 (0.832-0.980)	0.762 (0.613-0.947)	5	11	21	. 0332
24-hour urinary sodium (g)	1.004 (0.926-1.089)	1.029 (0.901-1.176)	0.915 (0.818-1.023)	0.964 (0.799-1.163)	3.46	4.89	6.4	. 0795
24-hour urinary potassium (g)	0.886 (0.832-0.943)	0.754 (0.652-0.871)	0.953 (0.868-1.046)	0.893 (0.718-1.110)	1.7	2.13	2.71	. 0005

eTable 19. GFR-decline outcome: single-variable model with mAHEI and multivariable model adjusted with the extended set of confounders 2

Independent Variable	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}{ }_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}$ death 3 vs 1	Median of Tertile			P Value
					1	2	3	
mAHEI score	0.907 (0.837-0.982)	0.804 (0.686-0.942)	0.939 (0.821-1.075)	0.659 (0.516-0.841)	17.911	24.646	33.232	<. 0001

Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	OR ${ }_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Alcohol (drinks/week)		0.816 (0.685-0.971)		0.713 (0.550-0.924)	0	0	5	. 0168
Animal proteins (g/kg/d)	0.968 (0.923-1.015)	0.915 (0.804-1.04)	1.015 (0.949-1.086)	1.042 (0.866-1.253)	0.27	0.47	0.81	. 0421
Plant proteins (g/kg/d)	0.955 (0.912-1.001)	0.880 (0.772-1.003)	0.981 (0.916-1.052)	0.949 (0.782-1.151)	0.14	0.2	0.3	. 1712
High-carbohydrate foods	1.044 (1.016-1.074)	1.246 (1.071-1.449)	1.028 (0.988-1.069)	1.169 (0.939-1.454)	2	9	21.46	. 0288
Deep fried food/snacks/fast food	1.138 (0.997-1.299)		1.076 (0.885-1.307)		no	yes (47.0\%)		. 1463
Fruits and fruit juices	0.969 (0.921-1.019)	0.945 (0.862-1.035)	0.917 (0.855-0.983)	0.854 (0.752-0.969)	4	9	17.32	. 0864
Vegetables	0.983 (0.931-1.038)	0.956 (0.827-1.106)	0.912 (0.839-0.990)	0.781 (0.627-0.975)	5	11	21	. 0590
24-hour urinary sodium (g)	1.004 (0.925-1.089)	1.029 (0.901-1.177)	0.920 (0.822-1.031)	0.982 (0.813-1.187)	3.46	4.89	6.41	. 0647
24-hour urinary potassium (g)	0.888 (0.834-0.945)	0.758 (0.656-0.876)	0.951 (0.866-1.044)	0.889 (0.715-1.106)	1.7	2.13	2.71	. 0008

eTable 20. Combined renal outcome: multinomial logit model including only variables from the set of known confounders

Independent Variables	$\mathrm{OR}_{\text {renal }} 2 \mathrm{vs} 1$	$\mathrm{OR}_{\text {renal }} 3 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 2 \mathrm{vs} 1$	$\mathbf{O R}_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Age (years)	1.085 (1.019-1.154)	1.176 (1.039-1.332)	1.584 (1.43-1.754)	2.508 (2.044-3.077)	58	65	72	<0.0001
$\mathrm{dUACR}_{\text {tp }}$	0.562 (0.51-0.619)	0.422 (0.371-0.48)	0.657 (0.56-0.77)	0.604 (0.486-0.751)	0.77	1.798	2.68	<0.0001
GFR	0.926 (0.877-0.978)	0.979 (0.88-1.088)	0.797 (0.73-0.87)	0.734 (0.606-0.89)	55.68	73.05	92.00	<0.0001
Duration of diabetes mellitus (years)	1.024 (0.991-1.057)	1.039 (0.985-1.097)	1.071 (1.007-1.138)	1.120 (1.011-1.24)	2	8	20	0.0472
Albuminuria status	1.160 (1.006-1.337)		1.900 (1.528-2.363)		Normoalbuminuria	Microalbuminuria		<0.0001
Sex	1.103 (0.976-1.245)		0.792 (0.641-0.98)		Male	Female		0.0098
ONTARGET randomization arms	0.894 (0.778-1.027)	1.026 (0.896-1.175)	1.137 (0.900-1.438)	1.155 (0.914-1.459	Telmisartan	Ramipril	Combination	0.1555

dUACRtp (Δ-UACR to progression) was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and UACR at baseline on the log-scale. OR $_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of CKD; $\mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period with participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2nd and 3rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1 st tertile (16.7 th percentile) as reference are shown. For sex "male" is the reference category; for ONTARGET randomization arms "telmisartan" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD.
eTable 21. Combined renal outcome: multinomial logit model including only variables from the set of extended confounders 1

Independent Variables	OR ${ }_{\text {renal }} 2 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 3 \mathrm{vs} 1$	OR ${ }_{\text {death }} \mathbf{2 v s} 1$	OR ${ }_{\text {death }} 3 \mathrm{vs} 1$	Median of Tertile			P Value
					1	2	3	
Age (years)	1.106 (1.043-1.174)	1.234 (1.092-1.395)	1.57 (1.425-1.731)	2.558 (2.089-3.132)	58	65	72	<0.0001
$\mathrm{dUACR}_{\text {tp }}$	0.579 (0.527-0.636)	0.449 (0.394-0.512)	0.675 (0.578-0.787)	0.63 (0.504-0.787)	0.77	1.79	2.68	<0.0001
GFR	0.934 (0.883-0.988)	0.991 (0.89-1.104)	0.808 (0.739-0.883)	0.752 (0.62-0.913)	55.59	73.12	91.98	<0.0001
Serum glucose (mg/dL)	1.05 (0.989-1.115)	1.259 (1.128-1.405)	1.021 (0.933-1.117)	1.25 (1.052-1.485)	104.76	140.04	197.64	<0.0001
Mean arterial blood pressure (mmHg)	1.024 (0.966-1.086)	1.047 (0.936-1.171)	0.966 (0.876-1.066)	0.937 (0.777-1.129)	91.67	102.67	112.66	0.4852
Duration of diabetes mellitus (years)	1.009 (0.976-1.042)	1.014 (0.960-1.071)	1.048 (0.985-1.114)	1.080 (0.976-1.196)	2	8	20	0.3103
Albuminuria status	1.125 (0.974-1.300)		1.867 (1.495-2.332)		Normoalbuminuria	Microalbuminuria		<0.0001
Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$)	1.027 (0.979-1.077)	1.062 (0.952-1.185)	0.997 (0.917-1.084)	0.994 (0.821-1.203)	24.68	28.65	33.79	0.5348
Sex	1.072 (0.947-1.215)		0.785 (0.631-0.975)		Male	Female		0.0217
ONTARGET randomization arms	0.909 (0.790-1.045)	1.041 (0.907-1.194)	1.124 (0.886-1.426)	1.186 (0.937-1.502)	Telmisartan	Ramipril	Combination	0.1915
Previous ACEI/ARB	1.321 (1.160-1.504)		1.170 (0.939-1.457)		No	Yes		0.0001

dUACRtp (Δ-UACR to progression) was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and UACR at baseline on the log-scale. OR $_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of $\mathrm{CKD} ; \mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period with participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2 nd and 3rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1st tertile (16.7 th percentile) as reference are shown. For sex "male" is the reference category; for ONTARGET randomization arms "telmisartan" is the reference category; for previous ACEI/ARBs "no" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD.
eTable 22. Combined renal outcome: multinomial logit model including only variables from the set of extended confounders 2

Independent Variables	OR ${ }_{\text {renal }} \mathbf{2 v s} 1$	OR ${ }_{\text {renal }} \mathbf{3 v s} 1$	OR ${ }_{\text {renal }} 4 \mathrm{vs} 1$	OR ${ }_{\text {renal }} 5 \mathrm{vs} 1$	Median of Tertile/Categories					$\begin{gathered} \boldsymbol{P} \\ \text { Value } \end{gathered}$
					1	2	3	4	5	
Age (years)	1.107 (1.038-1.180)	1.225 (1.078-1.394)			58	65	72			<0.0001
$\mathrm{dUACR}_{\text {tp }}$	0.575 (0.521-0.635)	0.437 (0.383-0.499)			0.77	1.79	2.68			<0.0001
GFR	0.918 (0.870-0.969)	0.962 (0.872-1.061)			55.63	73.12	91.98			<0.0001
Serum glucose (mg/dL)	1.060 (1.000-1.124)	1.271 (1.136-1.423)			104.76	140.04	197.64			<0.0001
Mean arterial blood pressure (mmHg)	1.027 (0.969-1.089)	1.053 (0.941-1.178)			91.67	102.67	112.67			0.5351
Duration of diabetes mellitus (years)	1.008 (0.975-1.042)	1.014 (0.959-1.071)			2	8	20			0.2195
Albuminuria status	1.109 (0.959-1.281)				Normoalbuminuria	Microalbuminuria				<0.0001
Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$)	1.022 (0.973-1.072)	1.05 (0.940-1.173)			24.67	28.65	33.792			0.6258
Sex	1.044 (0.911-1.196)				male	female				0.6569
ONTARGET randomization arms	0.916 (0.796-1.054)	1.043 (0.909-1.196)			Telmisartan	Ramipril	Combination			0.2373
Previous ACEI/ARB	1.311 (1.151-1.493)				no	yes				0.0002
Years of formal education	1.065 (1.013-1.12)	0.939 (0.893-0.987)	0.882 (0.798-0.975)	0.828 (0.713-0.962)	1-8 yrs	0 yrs	9-12 yrs	Trade/technical school	College/ university	0.0417
Physical activity	0.815 (0.663-1.003)	0.887 (0.757-1.04)	0.843 (0.722-0.985)		sedentary	<1/week	2-6/week	Every day	Every day	0.2610
Tobacco use	1.036 (0.942-1.139)	1.073 (0.888-1.297)			Never	Formerly	Current			<0.0001

Independent Variables	OR ${ }_{\text {death }} \mathbf{2 v s} 1$	OR ${ }_{\text {death }} 3 \mathbf{v s} 1$	$\mathrm{OR}_{\text {death }} 4 \mathrm{vs} 1$	$\mathrm{OR}_{\text {death }} 5 \mathrm{vs} 1$	Median of Tertile/Categories					P Value
					1	2	3	4	5	
Age (years)	1.665 (1.497-1.852)	2.772 (2.241-3.43)			58	65	72			<0.0001
$\mathrm{dUACR}_{\text {tp }}$	0.668 (0.568-0.785)	0.619 (0.496-0.774)			0.77	1.79	2.68			<0.0001
GFR	0.799 (0.737-0.867)	0.729 (0.611-0.87)			55.63	73.12	91.98			<0.0001
Serum glucose (mg/dL)	1.033 (0.944-1.131)	1.273 (1.058-1.532)			104.76	140.04	197.64			<0.0001
Mean arterial blood pressure (mmHg)	0.978 (0.886-1.079)	0.959 (0.794-1.157)			91.67	102.67	112.67			0.5351
Duration of diabetes mellitus (years)	1.055 (0.991-1.122)	1.093 (0.986-1.211)			2	8	20			0.2195
Albuminuria status	1.836 (1.469-2.293)				Normoalbuminuria	Microalbuminuria				<0.0001
Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$)	0.99 (0.91-1.077)	0.978 (0.806-1.186)			24.67	28.65	33.792			0.6258
Sex	0.939 (0.741-1.191)				Male	Female				0.6569
ONTARGET randomization arms	1.122 (0.884-1.425)	1.177 (0.929-1.491)			Telmisartan	Ramipril	Combination			0.2373
Previous ACEI/ARB	1.170 (0.939-1.459)				No	Yes				0.0002
Years of formal education	1.002 (0.921-1.09)	0.998 (0.917-1.086)	0.996 (0.842-1.179)	0.994 (0.772-1.281)	1-8 yrs	0 yrs	9-12 yrs	$\begin{gathered} \hline \text { Trade/technical } \\ \text { school } \\ \hline \end{gathered}$	College/ university	0.0417
Activity	0.924 (0.659-1.294)	0.849 (0.65-1.11)	0.801 (0.618-1.038)		Sedentary	<1/week	2-6/week	Every day	Every day	0.2610
Tobacco use	1.47 (1.254-1.724)	2.162 (1.573-2.971)			Never	Formerly	Current			<0.0001

dUACRtp (\triangle-UACR to progression) was defined as the difference between the participant-specific cutoff point of developing a new microalbuminuria, or macroalbuminuria and UACR at baseline on the log-scale. OR $_{\text {renal }}$ compares participants alive and with incidence or progression of CKD to participants alive but with no incidence or progression of $\mathrm{CKD} ; \mathrm{OR}_{\text {death }}$ compares participants who died within the follow-up period with participants alive with no incidence or progression of CKD. For continuous independent variables the ORs for the median of the 2 nd and 3rd tertile (50.0 th and 83.3 rd percentiles) compared to the median of the 1st tertile (16.7 th percentile) as reference are shown. For sex "male" is the reference category; for ONTARGET randomization arms "telmisartan" is the reference category; for previous ACEI/ARBs "no" is the reference category. Independent variables in bold have a significant association for incidence or progression of CKD.
eFigure 1. Combined renal outcome: single-variable models adjusted with known confounders

Association of alcohol (drinks/week), animal proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$), plant proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$), fruits and fruit juices (servings/week), vegetables (servings/week), leafy green vegetables (servings/week), high-carbohydrate foods (servings/week) and 24-hour urinary potassium (g) and relative odds with 95\% CI for incidence or progression of CKD (left) or death (right) and respective histograms. For confounders see legend to eTable 7. The gray vertical lines show tertiles and the numbers within each tertile give the percentage of participants experiencing the respective event.
eFigure 2. Combined renal outcome: single-variable model with mAHEI adjusted with known confounders, separated for participant's albuminuria status at baseline

Predicted probabilities of the renal event (left column) and death (right column) versus mAHEI with 95\% CI.
eFigure 3. Combined renal outcome: multivariable model adjusted with known confounders

Association of plant proteins ($\mathrm{g} / \mathrm{kg} / \mathrm{d}$) and high-carbohydrate foods (servings/week) and relative odds with 95\% CI for incidence or progression of CKD (left) or death (right) and respective histograms. The gray vertical lines show tertiles and the numbers within each tertile give the percentage of participants experiencing the respective event. For confounders see eTable 7. The remaining independent variables are depicted in the manuscript in Figure 4 and Figure 5.
eFigure 4. Comparison of estimates of multivariable models adjusted with known confounders after 2 and 5.5 years of follow-up

Multivariable models adjusted with known confounders after 2 and 5.5 years of follow-up are shown in eTables 13 and 8 , respectively.

Association of continuous variables and relative odds for incidence or progression of CKD after 2 (dashed lines) and 5.5 years (continuous lines) of follow-up. For confounders see eTable 7.

eReferences

(1) US Department of Agriculture, Agricultural Research Service. 2005. USDA National Nutrient Database for Standard Reference, (Release 18).
http://www.ars.usda.gov/Services/docs.htm?docid=13747. Accessed June 24, 2013.
(2) McCullough ML, Feskanich D, Stampfer MJ, Giovannucci EL, Rimm EB, Hu FB et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. The American Journal of Clinical Nutrition 2002; 76(6):1261-1271.
(3) Iqbal R, Anand S, Ounpuu S, Islam S, Zhang X, Rangarajan S et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the INTERHEART study. Circulation 2008; 118(19):1929-1937.
(4) Dehghan M, Mente A, Teo KK, Gao P, Sleight P, Dagenais G et al. A Prospective Cohort Study of 31546 High-Risk Individuals From 40 Countries. Circulation 2012; 126:2705-2712.
(5) O'Donnell MJ, Yusuf S, Mente A, Gao P, Mann JFE, Teo KK et al. Urinary sodium and potassium excretion and risk of cardiovascular events. Journal of the American Medical Association 2011; 306(20):2229-2238.
(6) Kawasaki T, Itoh K, Uezono K, Sasaki H. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clinical and Experimental Pharmacology and Physiology 1993; 20(1):7-14.
(7) Royston P, Sauerbrei W. Multivariable Model-building. A pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester: John Wiley and Sons, Ltd.; 2008.
(8) Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19(6):716-723.

