Table 1

Demographic data of PD-patients. Data are represented as counts or median and full range.

Parameter	Number
Patients	5
Diabetes mellitus	0
Previous NTX	0
Steroids	0
Patients with residual	
renal function (RRF)	5
Smokers	1
	Median (range)
Age (years)	56 (29 - 67)
Men/women	2/3
Weight (kg)	72 (53 - 84)
Month on dialysis	8 (4 - 18)
Albumin (g/L)	39 (36 - 43)
Hematocrit (%)	34.8 (34 – 40.8)
EPO (IU/week)	2000 (0 - 5000)
Kt/V (weekly)	2.5 (2.2 - 3.3)
RRF	1.2 (0.9 – 1.9)

Table 2

Biological processes separating IBF and GBF treated patient groups as derived on the level of PBMC differential gene expression. Categories are ranked by the p-value indicating the relevance of a particular process.

DEGs up-regulated by IBF treatment				
Biological process	Gene-Symbols	p-value		
	CIITA, UNQ3033, SCGB1C1, CLEC1B,			
Immunity and defence	CTSW, CLEC4E, TNFRSF7, CLEC10A	<0.001		
Natural killer cell mediated				
immunity	UNQ3033, CLEC1B, CTSW	<0.001		
T-cell mediated immunity	CIITA, CTSW, TNFRSF7	0.001		
-	UNQ3033, SCGB1C1, CLEC1B,			
Cell communication	STAT4, CLEC10A	0.008		
Other neuronal activity	SP110, RASGRP2	0.009		
Macrophage-mediated				
immunity	CLEC4E, CLEC10A	0.010		
Ligand-mediated signaling	STAT4, UNQ3033, SCGB1C1	0.010		
Other immune and defense	SCGB1C1, CLEC4E	0.012		
Glucose hemeostasis	STAT4	0.021		
	LST1, STAT4, UNQ3033, SCGB1C1,			
	RASGRP2, CLEC1B, TNFRSF7,			
Signal transduction	CLEC10A	0.022		
MHCI-mediated immunity	CTSW	0.023		
Cytokine und chemokine				
mediated signaling pathways	STAT4, TNFRSF7	0.029		
MHCII-mediated immunity	CIITA	0.036		
Glycolysis	HK3	0.048		

DEGs up-regulated by GBF treatment

Biological process	Gene-Symbols	p-value
	CELSR2, FOXA2, HLF, KRT80,	
	TNFRSF21, COBLL1, NTN4, CRABP1,	
Ectoderm development	NLGN2, FGFR3, THSD3	<0.001
	FRAS1, DOC1, CELSR2, MGP,	
	RND3,CGA, GNG4, RAB23, FOXA2,	
	AXL, CAP2, CDH13, INPP5F,	
	TACSTD2, TNFRST21, MFAP4,	
	DIRAS1, CRABP1, NLGN2, SFRP2,	
Signal transduction	THSD3, GPR161, FGFR3, NTN4	<0.001
	CELSR2, FOXA2, HLF, TNFRSF21,	
	COBLL1, NTN4, NLGN2, FGFR3,	
Neurogenesis	THSD3	<0.001
C C	FRAS1, CELSR2, MGP, CGA, FOXA2,	
	CAP2, CDH13, MFAP4, NTN4,	
Cell communication	CRABP1, NLGN2, SFRP2, THSD3	<0.001
	DOC1, AXL, CDH13, MAGEA12,	
Oncogenesis	NTN4, MLF1, FGFR3, THSD3	<0.001
C C	DOC1, CELSR2, MGP, FOXA2, HLF,	
	KRT80, TTK, MAGEA12, EFHD1,	
Developmental processes	TNFRSF21, COBLL1, NTN4, CRABP1,	0.001

Other oncogenesis	NLGN2, FGFR3, THSD3 MAGEA12, FGFR3, THSD3 DOC1, FOXA2, AXL, TACSTD2,	0.002
Cell proliferation and	C9orf58, UHRF1, NTN4, MLF1, GINS2,	
differentation	FGFR3	0.002
	DLG5, CELSR2, COL7A1, FOXA2,	
Cell structure	KRT80, PHLDB1, TJP1	0.006
	DLG5, CELSR2, COL7A1, FOXA2,	
Cell structure and motility	KRT80, PHLDB1, TJP1, RND3, CAP2	0.011
DNA replication	DOC1, CDC2, GINS2	0.014
Homeostasis	CGA, HEPH, FSTL1	0.025
Stress response	MOCOS, C9orf58, GPX3	0.026
Other cell cycle process	UHRF1	0.028
DNA metabolism	DOC1, CDC2, DNTT, GINS2	0.028
Other receptor mediated		
signaling pathway	FOXA2, TACSTD2, TNFRSF21	0.030
	DOC1, DGC, C1R, MMP15, CAP2,	
Proteolysis	SERPINA5, TIMP3	0.033
	CELSR2, RND3, GNG4, FOXA2, AXL,	
Cell surface receptor mediated	TACSTD2, TNFRSF21, FGFR3,	
signal transduction	THSD3, GPR161	0.035
Other steroid metabolism	SC5DL	0.041
	DOC1, CDC2, FOXA2, TTK, C9orf58,	
Cell cycle	UHRF1, GINS2	0.042
Sex determination	ТТК	0.044
Cell cycle control	DOC1, CDC2, FOXA2, C9orf58	0.045
Neurotransmitter release	STXBP1, EHD2	0.046
	CELSR2, COL7A1, CDH13, MFAP4,	
Cell adhesion	NLGN2	0.049

Figure Legends

Figure 1

The dendrogram derived by unsupervised hierarchical clustering of differentially expressed genes comparing IBF and GBF treatment (PD: Peritoneal dialysis, I-V: patient ID, 1: IBF, 2: GBF, microarray label). The Pearson correlation and complete linkage were used as distance measure and linkage rule in the hierarchical cluster algorithm. Red spots indicate abundantly expressed transcripts, whereas green spots indicate transcripts expressed on low level when compared to the reference RNA.

Figure 2

Largest protein-protein interaction subgraph derived on the basis of differentially regulated genes with a fold change over 1.5, respectively. Blue nodes (98 DEGs) indicate up-regulated genes by GBF treatment and orange nodes (34 DEGs) up-regulated genes by IBF treatment. Gray nodes represent proteins identified by the nearest neighbour expansion method.

Figure 1

qRT-PCR Validation

Method

Expression profiles of four selected genes (CIITA, TNFRSF7, CTSW, CLEC1B) were analyzed by real time PCR. Total RNA isolated from the same samples like in the microarray experiments was used for cDNA synthesis with the High Capacity cDNA Reverse Transcription Kit. Real time PCR was performed using TaqMan Gene Expression Master Mix and TaqMan Gene expression assays (Hs00172106_m1, Hs00386811_m1, Hs00175160_m1, Hs00212925_m1) on an ABI 7300 Sequence Detection System. Relative gene expression values were evaluated with the 2^{-ΔΔCt} method using PPIA (Hs99999904_m1, cyclophilin A) as housekeeping gene and Stratagene Universal human reference RNA (Stratagene, La Jolla, California) as reference. All instruments and real time PCR reagents were purchased by Applied Biosystems (Foster City, CA, USA).

Results

The relative expression levels of the four selected genes after the peritoneal dialysis treatment with glucose (GBF) or icodextrin (IBF) in the oligo microarray and qRT-PCR experiment are shown in table S1. For the visualization in figure S1 the median relative expression of the five PD-patients after GBF treatment in both experiments was set to zero allowing to compare the differences to the IBF treatment directly in one figure. All four genes show an up-regulation after the IBF treatment. Almost all of the patients show the same trend in the qRT-PCR and microarray experiment, although the up-regulation is less in the validation experiment

Table S1. Log_2 (relative expression) in the microarray and qRT-PCR experiment of five patients (PD-I – PD-V) after glucose based fluid (GBF) or icodextrin based fluid (IBF) peritoneal dialysis treatment.

	CIITA				
	Array		qRT-	PCR	
	GBF	IBF	GBF	IBF	
PD-I	3.31	2.83	7.76	7.95	
PD-II	0.57	2.31	7.37	7.79	
PD-III	2.73	4.06	8.27	8.61	
PD-IV	2.42	4.17	8.70	8.49	
PD-V	0.70	3.06	8.72	9.02	

	TNFRSF7				
	Array		qRT-	PCR	
	GBF	IBF	GBF	IBF	
PD-I	2.18	3.54	10.35	10.62	
PD-II	1.71	3.28	10.50	11.26	
PD-III	1.22	3.20	9.61	9.91	
PD-IV	1.47	2.29	9.62	9.30	
PD-V	0.08	1.21	10.93	12.30	

	CTSW				
	Array		qRT-PCR		
	GBF	IBF	GBF	IBF	
PD-I	4.23	4.28	11.70	11.65	
PD-II	3.47	4.98	11.88	11.81	
PD-III	2.67	4.45	11.78	11.86	
PD-IV	3.54	4.47	12.33	12.83	
PD-V	1.75	3.46	11.69	12.12	

	CLEC1B				
	Array		P	CR	
	GBF	IBF	GBF	IBF	
PD-I	2.25	3.27	13.00	13.83	
PD-II	2.87	3.92	13.92	14.09	
PD-III	3.91	4.67	14.76	15.15	
PD-IV	3.32	4.52	15.47	15.55	
PD-V	2.31	4.07	16.85	16.98	

Figure S1. qRT-PCR validation of four selected genes (CIITA, TNFRSF7, CTSW, CLEC1B): The log₂ (relative expression) measured in the microarray and in the realtime RT-PCR (TaqMan assays) experiment of five PD patient (PD-I – PD-V) and their median is shown. Median log₂ (relative expression) after the glucose based fluid (GBF) peritoneal dialysis treatment in the microarray and qRT-PCR experiment was set to zero allowing to compare the relative differences to the icodextrin based fluid

(IBF) treatment in both experiments in one figure. All genes (A-D) are up-regulated by IBF in both methods although the up-regulation is less in the validation experiment.