Supplemental Data for

Daniela Dunkler, Peggy Gao, Shun Fu Lee, Georg Heinze, Catherine M. Clase, Sheldon Tobe, Koon
K. Teo, Hertzel Gerstein, Johannes F.E. Mann, Rainer Oberbauer on behalf of the ONTARGET &
ORIGIN Investigators. Risk Prediction for Early Chronic Kidney Disease in Type 2 Diabetes.

Contents

Supplemental Figure 1. Kaplan-Meier Plot Comparing Follow-Up of ONTARGET and ORIGIN...........ccccceeeunnnne 2
DECISION CUIVE ANGIYSIS cuvreieieiiiee ettt e ettt e e ste e e s steee e ettt e e esbaeeesastaeeesstaeesasteeeesastaeesssteeesansesessansaeassnssneens seensnns 3
Supplemental Figure 3. Scatterplot Comparing eGFR CKD-EPl and eGFR MDRD (2,3). ...cceveuveeeccrieeeiireeeennenn, 5
Comments 0N the StatiStiCal ANAIYSIS.....ccccuuiii i e e e e et ee e e e ate e e e e baeeeenabeeeeennees 6
Supplemental Table 1. Performance of Prediction Models in the Development and Validation Cohorts ......... 9
Supplemental Figure 4. Receiver-Operating Curves (ROC) .......ococuuiieeiiiiie ettt ettt eevee e et e e e are e e e 10
Supplemental Figure 5. Calibration PIOtS ........uiiiiiiiiiiiee ettt et e e e e e s s e e e snnaaeeean 11
Supplemental Figure 6. Predicted Probabilities .........cccuiiiiiiieii e 12
Supplemental Table 2. Prediction EQUAtIONS ......ccuiieiiiieie et ee sttt eertte e e st e e e e aae e e ssaaeeeesasaeeessbaeesnnnaaeann 14
RETEIEINCES ...ttt ettt ettt e b et e bt e e bt e sh e e she e s ae e e ae e e ab e et e et e et e e been £eabeebeebe e beenbeenes 19

This supplementary material has been provided by the authors to give readers additional information about their work.



Prediction of Chronic Kidney Disease

Supplemental Figure 1. Kaplan-Meier Plot Comparing Follow-Up of
ONTARGET and ORIGIN
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Validation cohort: To receive a similar follow-up as in ONTARGET, the 2-year visit was used as baseline in the
validation. In ORIGIN almost all necessary variables were determined at the 2-year visit, with the exception of

diabetes and peripheral artery disease. Therefore, the status at baseline was used for these two variables.
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Decision Curve Analysis

Methods

Using decision curve analysis (1), we quantified the clinical usefulness of our risk calculator for detecting
individuals requiring referral to a renal specialist by computing its net benefit, which is a summary measure of

the true and false detection rates.

For evaluating clinical usefulness, predicted probabilities near a pre-defined threshold, i.e., a
probability above which individuals are classified as high-risk, are of greatest importance. We conducted a
decision curve analysis to compute the ‘net benefit’ of using our prediction models to decide if an individual
should be referred to a renal specialist (1). The net benefit is the true detection rate discounted by the rate of
false detections, which are weighted by the assumed ‘costs’ of a false detection. This analysis makes the
assumption, that if for a referral decision a threshold probability of, say, 10% is used, then implicitly the benefit
of early detection of one individual who will later experience incidence or progression of CKD is rated to be
equal to the costs of nine unnecessary referrals (=(100-10%)/10%). Thus, with a 10% threshold probability for a
referral decision the net benefit is the proportion of true positives minus the proportion of false positives divided
by nine. By varying the threshold, a decision-analysis curve is obtained which can be compared to the curves

showing the net benefits of referring all or no patients.

Results

Laboratory model: Supplemental Figure 2 displays decision curves quantifying clinical usefulness. If a
probability of incidence or progression of CKD of > 10% was used to decide upon referral of an individual to a
specialist, the net benefit of applying the laboratory model was 7.3%; equivalent to the benefit of 7 true-positive

detections per 100 individuals without increasing the number of false detections.

Clinical model: If individuals with a probability of incidence or progression of CKD > 10% are classified as

high-risk, the net benefit of applying the clinical model was 7.8% (Supplemental Figure 2, right).

Supplemental Figure 2: Decision curve analysis for the laboratory (left panel) and the clinical model
(right panel) for the outcome state ‘alive with incidence and progression of CKD’ based on the

development cohort (first row) and the validation cohort (second row).

Decision curves show the net benefit of referring individuals to a specialist in kidney care if a certain threshold
probability is exceeded and thus comparing the decision based on the prediction model to the strategies of
referring all (dashed line) or no individuals (black horizontal line). A threshold probability of, e.g., 10% means
that individuals with a probability of incidence and progression of CKD are classified as high-risk and should be

referred to a renal specialist. At the threshold probability the cumulative ‘costs' of false-negatives, i.e. high-risk



individuals who are not timely referred, and of false-positives, i.e. low-risk individuals who are unnecessarily
referred, are assumed to be equal. Threshold probabilities of 10, 15 or 20% correspond to the assumptions that
the missed referral of one individual who will develop CKD is 9, 5.7 or 4 times worse than one unnecessary
referral, respectively. The numbers in the left panel (first row) indicate that the net benefit of applying the
laboratory model: (a) 7.34% at a threshold probability of 10% (i.e. assuming one missed referral of an individual
who will develop CKD is 9 times worse than one unnecessary referral), which mean that applying the model is
equivalent to 7 additional true-detections per 100 individuals without increasing the number of false detections,

(b) 4.53% at a threshold probability of 15%, and (c) 2.74% at a threshold probability of 20%. Note, that the net
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benefit of a perfect prediction model for CKD can maximally attain 16% (equaling the incidence of CKD).

Development cohort

Validation cohort

Net benefit (%)

Net benefit (%)

144 |\

12

10

14

12

10

8

Laboratory model

Net benefit of treating...

... no individual

... allindividuals

individuals with pp > threshold

Estimate

apparent
—=- mean of internally validated

.78
3.74
T@s

T T T T I T j

10 20 30 40 50 60 70
Threshold probability (%)

T T T f ‘

10 20 30 40 50

Threshold probability (%)

Abbreviation: pp, predicted probability.

Net benefit (%)

Net benefit (%)

Clinical model

. \
14 \
\
\
\
12 \
\
\
\
10 \
\
\ 8
\
8 7.81
\
\
\
6 \
\5.15
N
\
4 N 35
N
\
Ay
2 AN
N
SN~
o [,
T T T T
0 20 40 60
Threshold probability (%)
<
-
N ]
-
o
-
o 4
©
< d
4
o4 ——-—-—-—-—-—-mmmmmm-mmmmmmmmmmmmmmmmn " T
T T T T T T
0 10 20 30 40 50

Threshold probability (%)




Prediction of Chronic Kidney Disease

Supplemental Figure 3. Scatterplot Comparing eGFR CKD-EPI and
eGFR MDRD (2,3).

Data stem from the development cohort.

120
I

100
I

60

eGFR CKD-EPI

40

20
I
\

o]

r— 1 1 T T 1T T T T T 1T
20 60 100 140 180 220
eGFR MDRD

Abbreviations: eGFR, estimated glomerular filtration rate.



Prediction of Chronic Kidney Disease
Comments on the Statistical Analysis

Preliminary work. In ONTARGET the maximum absolute correlation among predictors for the laboratory and
the clinical model were 0.25 and 0.39. Values of continuous predictors were truncated at their 0.5™ and 99.5™

percentiles.

Modeling algorithm. Multinomial logistic regression was applied to develop prediction models for the three
outcome states (4). Using the polytomous outcome had the advantage that potential dependence between the

different outcome states were incorporated compared to using multiple dichotomous models.

Fractional polynomials were applied to model nonlinear relationships of continuous predictors with the
outcome (5). Optimal powers were selected by the RA2-algorithm with the significance level set to 0.157, which
corresponds roughly to a selection according to the AIC criterion (6). Continuous predictors were roughly scaled
to [0, 1] to ensure convergence of the modeling algorithm. For categorical predictors variable selection was

conducted by likelihood-ratio-tests within each cycle of the RA2-algorithm.

After selection of predictors and fractional polynomials, interactions were tested by including all pair-
wise product interaction terms into the model. If these interactions were (together) significant in the apparent
model, all interactions were checked by graphical means. In neither the laboratory nor the clinical model
interactions were significant. If these interactions were significant in a bootstrap resample, then all interactions

were included into the respective model.

Model Development and Validation. First, the devised modeling algorithm was applied to the development
cohort to construct ‘apparent’ prediction models. Second, it was applied to 500 bootstrap resamples to evaluate
model stability and internal validation. Using 500 bootstrap resamples yields sufficiently small standard
deviations for the optimism-corrected c-statistics in the clinical model for the outcome states alive without
incidence or progression of chronic kidney disease (CKD), alive with incidence or progression of CKD, and

death 0f 0.008, 0.011, and 0.010, respectively.

Applying the apparent model on the development cohort will typically give optimistic estimates of
model performance. Therefore, the model performance was internally and externally evaluated. While internal
validation focuses on the development process and the quality of the model in a similar population, external

validation focuses on transportability to another population.

For internally validated or optimism-corrected estimates, for each bootstrap resample j the complete

modeling algorithm was repeated and the optimism was estimated by
apparent — (bootstrap . apparent — DOOtStrap; .o ) , where apparent was the apparent estimate from the development
data, bootstrap; apparent Was the estimate from the jth bootstrap resample applied to the jth bootstrap resample, and

bootstrap; est was the estimate from the j™ bootstrap resample applied to the development data (7).

Predictive accuracy is defined as the mean absolute difference between observed and expected outcome

probabilities and can be computed for a model with and without predictors (8). The relative improvement in
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predictive accuracy due to consideration of predictors is termed explained variation (9), ranging from 0% (no
prognostic relevance) to 100% (perfect prediction). Relative importance of individual predictors can be
quantified by the drop in explained variation if these predictors are removed from the model (10). The
proportion of variation explained by individual predictors is given for each predictor (or groups of predictors) in
Table 3 as the respective partial explained variation divided through the explained variation and multiplied with
the Nagelkerke-R” in order to allow direct comparison between the Nagelkerke-R* of the model with the

proportion of variation explained by individual predictors.

Performance Measures. If a performance measure has no direct extension to the polytomous outcome, the

weighted mean of the three pairwise comparisons is given.

Shrinkage. Optimism-corrected calibration slopes were used as a global linear shrinkage factors (towards the

overall mean) to correct the apparent laboratory and clinical models for optimism. The shrunken intercepts ¢,
and o, are o, = Jr(ﬁ1 —al)(l—sl) and a,, =a, +(772 —az)(l—sz) , where ¢, and @, are the apparent
estimates of the intercepts, 77,and 77, are the linear predictors based on apparent regression coefficients, and s;

and s, are global shrinkage factors for outcome 1 (‘alive with incidence or progression of CKD’) and 2 (‘death’),

respectively. The shrunken coefficients S and B, for outcome 1 and 2 for i=1,...,.k are simply f,; = S, s,
Bis =88 Bs =B85 Bs =55 Bs=55> and ﬂbs =ﬂi252,

Interpretation of Decision Curve Analysis (1). Individuals with type 2 diabetes mellitus who might be at risk
for chronic kidney disease are currently not automatically transferred to a specialist. By using a prediction
model, one can categorize individuals into low and high risk of developing chronic kidney disease. An
individual with a very low predicted probability for incidence or progression of chronic kidney disease might
not need to be transferred to a specialist, whereas a timely transferal may be necessary for an individual with a

large predicted probability.

A threshold probability can be defined as the probability, starting from which an individual should be
transferred to a specialist, because the potential benefits exceed its potential harms or efforts. Thus the choice of
the threshold probability depends on the ‘costs’ of false-positives (i.e. low-risk individuals who are
unnecessarily transferred) relative to the ‘costs’ of false-negatives (i.e. high-risk individuals who are not timely
transferred). The net benefit of applying a prediction model for a specific threshold probability is defined as the
true positive rate minus the false positive rate, the latter weighted by the relative costs of a false-positive
prediction compared to a false negative one. The such-defined net benefit can range from minus infinity up to

the prevalence of the outcome observed in a study population.

In order to decide if the net benefit of a prediction model for a specific threshold probability is of
clinical importance, it can be compared to two hypothetical situations: while in the first, all individuals with type
2 diabetes mellitus are transferred to specialists to avoid false negatives, in the second situation no individual
with type 2 diabetes mellitus is transferred to avoid any false positives. The second situation has a net benefit of
0, since there are neither true positives nor false positives. Therefore, compared to the second situation, a

prediction model with a positive net benefit is beneficial. In the first situation the net benefit can be computed

7
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by using the proportion of individuals who do and do not experience chronic kidney disease. If the net benefit of
transferring all individuals to specialists is smaller than the net benefit of the prediction model, then the

application of the prediction model is beneficial.

A decision curve gives the net benefit for various threshold probabilities for applying the prediction
model, for assuming all individuals will experience chronic kidney disease or for assuming all individuals will
not experience chronic kidney disease. The net benefit of the prediction model of very low or very high
threshold probabilities is generally similar to the net benefit of assuming all individuals will experience chronic
kidney disease or all individuals will not experience chronic kidney disease, respectively. Only between these

two extremes the prediction model may be of value.
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Supplemental Table 1. Performance of Prediction Models in the
Development and Validation Cohorts

for the Outcome ‘Alive without incidence or progression of chronic
Kidney disease’.

Performance Measures Laboratory Model | Clinical Model
Explained Variation
Nagelkerke-R?
optimism-corrected 11.70% 13.02%
externally-validated 11.34% 12.66%
Discrimination
C-statistic

optimism-corrected 0.68 0.69
externally-validated 0.68 0.69
Calibration '
Calibration-in-the-large
optimism-corrected 0 0
externally-validated 0.03 -0.04
Calibration slope
optimism-corrected 0.98 0.91
externally-validated 1.01 1.03

' A multinomial logistic model with three outcomes has two estimates for calibration-in-the-large and the
calibration slope. In an ideally calibrated prediction model calibration-in-the-large would be 0 and the
calibration slope would be 1, indicating that predictions are not systematically biased. The optimism-corrected

calibration slopes are used as shrinkage factors of the prediction models.
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Supplemental Figure 4. Receiver-Operating Curves (ROC)

for the Laboratory and the Clinical Model based on the Development

and Validation Cohort.

Development cohort

Validation cohort

sensitivity

04

sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

1.0

0.8

0.6

0.2

0.0

Laboratory model

sensitivity

0.4

sensitivity

0.4

ol i
.”;V
V2
g
o
T T T T T T
0.0 02 0.4 0.6 0.8 1.0
1-specificity
T
P -7 -
e
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity

1.0

0.8

0.6

0.2

0.0

1.0

0.8

0.6

0.2

0.0

Clinical model

‘_;_)m-"
.A/’
Z
_/-’/
e
s /
4
4
’/
v
4
P
.Y
Y
5
/| Estimate
;’ — alive wio CKD
7 === alive with CKD
------ death
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity
> 4
=
.¢’—— /’
B
_o’— //
i /’
L
PEd e
R
L v
Ry
. 4
. (d
, 7
y4
Y4l
S S
4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity

10



Prediction of Chronic Kidney Disease

Supplemental Figure 5. Calibration Plots

... alive w/o CKD ... alive with CKD ... death
009 ea 100 Cohort 100 -
Y nonparametric — development ,
I grouped individuals a0 4 validation o0 4
3 . -
-8 2 60 - 2 60 - 2 60
3 3 3
£ 3 3 3
=3 = =
> 2 14 14
T’ g0y T 40 3 40
=} 2 2 2
= ) < o
E 2 2 2
) O 20+ O 20 O 204
o
©
—
0 0 0
T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Predicted probability Predicted probability Predicted probability
100 | 100 1 100 1
80 | 80 80
> 0 3 3
60 | 60 | 60 1
o =3 =3 =3
IS 2 L2 L
— g 40 T 40 g 40
[ 2 2 <4
£ Oy O 2 O 20+
0 ves 0 0
no

T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Predicted probability Predicted probability Predicted probability

Calibration plots for the laboratory (first row) and the clinical model (second row) for each outcome state: alive without incidence or progression of CKD, alive
with incidence or progression of CKD, and death based on internally validated estimates of the development cohort and on the validation cohort. Calibration plots
depict the agreement of predicted probabilities and observed frequencies of the prediction model (continuous line) and for comparison a perfect prediction model (dashed
line). Distribution of predicted probabilities is indicated by groups of participants (points). On the bottom the distribution of predicted probabilities for individual participants
in the development cohort is depicted (vertical lines). Vertical lines upward represent participants with the outcome of the respective column; lines downwards represent
participants from the other two outcome states.

Abbreviations: CKD, (incidence or progression of) chronic kidney disease.
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Supplemental Figure 6. Predicted Probabilities

for incidence or progression of chronic kidney disease after 5.5 years
and death within 5.5 years computed by the laboratory model.

Supplemental Figure 6a. Hypothetical male individual aged 60, 65 or 70.
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Supplemental Figure 6b. Hypothetical female individual aged 60, 65 or 70.
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Supplemental Table 2. Prediction Equations

Supplemental Table 4a: Laboratory Prediction Equation

The laboratory prediction models includes the following predictors: UACR (mg/g), eGFR CKD-EPI (ml/min

per 1.73m?), gender and age.

Range of continuous predictors

Predictor Minimum Maximum
UACR (mg/g) 0.75 292.15
eGFR CKD-EPI (ml/min per 1.73m?) 26.55 111.15
Age (years) 55 84

Prediction equation

i Shrunken
Outcome state Predictor Transforr_natmn or o
coding coefficients
Intercept -0.6727
A Albuminuria stage’  microalbuminuria = 1 -0.1809
¥ . (d-UACR,+0.1)/5 -5.4497
O Predictors | d-UACRy, 3
[(d-UACR,+0.1)/5] 4.7267
eGFR [(eGFR+0.1)/120]* 0.0890
Gender female = 1 0.0081
Age [age+0.1)/90] -0.2088
Intercept -5.3823
- Albuminuria stage’  microalbuminuria = 1 0.5402
5 . (d-UACR,+0.1)/5 -2.0727
Q Predictors | d-UACRy, ;
[(d-UACR, +0.1)/5] 1.5816
eGFR [(eGFR+0.1)/120]* 0.1120
Gender female = 1 0.5981
Age [age+0.1)/90] 5.3485

1 R R
versus normoalbuminuria = 0.

The predicted risk of an individual can be computed in the following manner:

1) Compute ‘d-UACR to progression’ (d—UACRtp)1 from UACR (mg/g) at baseline:

d-UACR , = In(cutpoint/UACR (mg/g)), with

30

cutpoint =
P {300

if 0<UACR (mg/g) <30
if 30 <UACR (mg/g) <300

' d-UACR, was defined as the difference between the participant-specific cutpoint of developing a new micro- or macroalbuminuria and

UACR at baseline on the log-scale. A participant-specific cutpoint was required because new micro- or macro-albuminuria was defined by
crossing the cutpoints of 30 and 300 mg/g (3.4 and 33.9 mg/mmol), respectively.

14
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2) Compute the linear predictor for incidence or progression of CKD Ip, (X):

Ip,(X)= L., + L% +ot BiX =
=-0.76727-0.1809 * albuminuria —

5.4497 [ (d-UACR , +0.1)/5 |+ 4.7267 [ (d-UACR,, +0.1) /5| +

0.0890 *[ (eGFR +0.1)/120 ] +0.0081 * female —0.2088 *[ (age +0.1)/90 |

3) Compute the linear predictor for death Ip,(x):

Ipy (X) = By + Bk ot BiX; =
=-5.3823+0.5402 * albuminuria —

2.0727#[ (d-UACR,, +0.1) /5] +15816+[ (d-UACR,, +0.1)/5 ] +

0.1120#[ (eGFR +0.1)/120] ~ +0.5981 * female — 5.3485 *[ (age + 0.1)/90]

4) Conditional probabilities for each outcome y given the predictor vector X are

1
1+eP 0 4 glhat”’

Ip; (X)
e r
—'9l4 1 ! —
P( y ="alive with renal outcome'| X) = eh 0 1 g0 and

P(y ='alive w/o renal endpoint'| X) =

e'Pd(X)

Py = death )= 55

Supplemental Table 2b: Clinical Prediction Equation

The clinical prediction models includes the following predictors: UACR (mg/mmol), eGFR CKD-EPI (ml/min
per 1.73m?), duration of diabetes (years), glucose (mmol/L), fasting LDL (mmol/L) , waist circumference (cm),
number of antihypertensive drugs, age (years), gender, race (European, Asian, or Other), and the comorbidities
peripheral artery disease (i.e. PTA , limb or foot amputation; PAD), stroke/TIA, laser therapy for diabetic
retinopathy, and MACE. Comorbidity MACE, i.e. major atherosclerotic cardiac events, was defined as
myocardial infarction, stable or unstable angina, CABG surgery, or PTCA/atherectomy/PCI. For number of
antihypertensive drugs a score between 0 and 5 was devised, with one point for each group (RAS-blocker,
calcium-channel-blocker, alpha-blocker, beta-blocker or diuretics) from which drugs were prescribed.

15
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Range of continuous predictors

Predictor Minimum Maximum

UACR (mg/g) 0.75 292.15
eGFR CKD-EPI (ml/min per 1.73m?) 26.55 111.15
Age 55 84
Glucose (mmol/L) 3.081 19.5
Fasting LDL (mmol/L) 0.8 6.097
Duration of diabetes (years) 0.0060 64.9778
Waist circumference (cm) 64.02 139

Prediction equation

. . ) Shrunken
Outcome state Predictor Transformation or coding .
coefficients
Intercept -0.7382
(d-UACR4,+0.1)/5 -4.8303
d-UACRy, ;
[(d-UACRy, +0.1)/5] 4.4693
eGFR CKD-EPI [(egfr+0.1)/120]> 0.0775
Albuminuria stage® microalbuminuria = 1 -0.2217
Age (age+0.1)/90 0.7529
PAD yes =1 0.3621
[(glucose+0.1)/20]" -1.1451
Glucose r
In([(glucose+0.1)/20])*[(glucose+0.1)/20] -0.5042
glumber of antihypertensive (score from0to5)/5 0.7667
a rugs
X . . 3 Asian = 1 0.3094
O Predictors Ethnic group
Other = 1 0.2216
. [(1d1+0.1)/10]> 0.0069
Fasting LDL )
[(1d1+0.1)/10] 1.3196
Duration of diabetes [In(diabduration+0.003)+6]/12 0.3271
Stroke/TIA? yes =1 0.0865
Gender* female = 1 -0.0216
L [(waist+0.1)/140]> 0.1080
Waist circumference , 5
[(waist+0.1)/140] 0.9222
MACE? yes =1 -0.1053
Laser therapy for diabetic yes =1 0.1006

retinopathy”

versus no = 0.

B T

versus normoalbuminuria = 0.

versus European = 0.
versus male = 0.
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. . . Shrunken
Outcome state Predictor Transformation or coding .
coefficients
Intercept -5.2880
(d-UACR,+0.1)/5 -1.7979
d-UACRy, ,
[(d-UACR,, +0.1)/5] 1.5969
eGFR CKD-EPI [(egfr+0.1)/120]> 0.0990
Albuminuria stage® microalbuminuria = 1 0.4115
Age (age+0.1)/90 5.1527
PAD? yes =1 0.6782
[(glucose+0.1)/20]" -1.4714
Glucose I
In([(glucose+0.1)/20])*[(glucose+0.1)/20] -0.6895
l(;lumber of antihypertensive (score from 0 to 5)/ 5 0.2970
= rugs
5 . . 3 Asian =1 -0.0353
O Predictors Ethnic group
Other = 1 0.1458
_ [(1d1+0.1)/10]> 0.0063
Fasting LDL )
[(1d1+0.1)/10] 2.5752
Duration of diabetes [log(diabduration+0.003)+6]/12 0.3132
Stroke/TIA? yes =1 0.3867
Gender* female = 1 -0.1904
o [(waist+0.1)/140] 0.2402
Waist circumference , 3
[(waist+0.1)/140] 1.3245
MACE? yes =1 0.1769
Laser therapy for diabetic yes=1 0.0198

retinopathy’

versus normoalbuminuria = 0.
versus no = 0.

versus European = 0.

versus male = 0.

E N S

17
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1) and 4) as in the laboratory model.

2) Compute the linear predictor for incidence or progression of CKD Ip, (X):

Ip, (X) = 0.7382—-0.2217 * albuminuria -
4.8303+[ (d-UACR,, +0.1)/5 ] +4.4693 [ (d-UACR , +0.1)/5] +
0.0775*[ (eGFR +0.1)/120]~ +0.7529 #[ (age +0.1)/90 ] +
0.3621* PAD ~1.14513015 %[ (glucose +0.1)/20] " —
0.5042 %[ (glucose +0.1)/20] " *In[ (glucose +0.1)/20]+0.7667* nDrugs/5+
0.3094* Asian+0.2216*Other+0.0069*[ (1d1+0.1)/10]
13196*[ (1d1+0.1)/107 +0.3271% In(diabduration +0.003)+6 /12 +
0.0865*stroke —0.0216*female+0. 1080*[ (waist +0.1)/140] * +
0.9222*[ (waist +0.1)/140] —0.1053*MACE ~0.1006*laser

3) Compute the linear predictor for death Ip,(X):

Ip, (X) = =5.2880+0.4115 * albuminuria —
17979 +[ (d-UACR,, +0.1)/5] +1.5969 [ (d-UACR , +0.1)/5] +
0.0990 #[ (eGFR +0.1)/120] * +5.1527 %[ (age +0.1)/90 ] +
0.6782* PAD ~ 14714 %[ (glucose +0.1)/20] ' -
0.6895 *[ (glucose +0.1)/20] " *In[(glucose +0.1)/20 ]+0.2970% nDrugs /5 -
0.0353*Asian-+0.1458 *Other+0.0064*[ (1d1+0.1)/10]
2.5752*[(1d1+0.1)/10]" +0.3132#[ In (diabduration +0.003) + 6 ] /12 +
0.3867*stroke —0.1904*female-+0.2402*[ (waist +0.1)/140] " +
132454 (waist +0.1)/140 ] +0.1769*MACE —0.0198*laser
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