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Supplemental Figure 1. KaplanMeier Plot Comparing FollowUp of 
ONTARGET and ORIGIN 
 

 

 

 

Validation cohort: To receive a similar follow-up as in ONTARGET, the 2-year visit was used as baseline in the 

validation. In ORIGIN almost all necessary variables were determined at the 2-year visit, with the exception of 

diabetes and peripheral artery disease. Therefore, the status at baseline was used for these two variables. 
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Decision Curve Analysis  

Methods 

Using decision curve analysis (1), we quantified the clinical usefulness of our risk calculator for detecting 

individuals requiring referral to a renal specialist by computing its net benefit, which is a summary measure of 

the true and false detection rates. 

For evaluating clinical usefulness, predicted probabilities near a pre-defined threshold, i.e., a 

probability above which individuals are classified as high-risk, are of greatest importance. We conducted a 

decision curve analysis to compute the ‘net benefit’ of using our prediction models to decide if an individual 

should be referred to a renal specialist (1). The net benefit is the true detection rate discounted by the rate of 

false detections, which are weighted by the assumed ‘costs’ of a false detection. This analysis makes the 

assumption, that if for a referral decision a threshold probability of, say, 10% is used, then implicitly the benefit 

of early detection of one individual who will later experience incidence or progression of CKD is rated to be 

equal to the costs of nine unnecessary referrals (=(100-10%)/10%). Thus, with a 10% threshold probability for a 

referral decision the net benefit is the proportion of true positives minus the proportion of false positives divided 

by nine. By varying the threshold, a decision-analysis curve is obtained which can be compared to the curves 

showing the net benefits of referring all or no patients.  

 

Results 

Laboratory model: Supplemental Figure 2 displays decision curves quantifying clinical usefulness. If a 

probability of incidence or progression of CKD of ≥ 10% was used to decide upon referral of an individual to a 

specialist, the net benefit of applying the laboratory model was 7.3%; equivalent to the benefit of 7 true-positive 

detections per 100 individuals without increasing the number of false detections.  

 

Clinical model: If individuals with a probability of incidence or progression of CKD ≥ 10% are classified as 

high-risk, the net benefit of applying the clinical model was 7.8% (Supplemental Figure 2, right). 

 

Supplemental Figure 2: Decision curve analysis for the laboratory (left panel) and the clinical model 

(right panel) for the outcome state ‘alive with incidence and progression of CKD’ based on the 

development cohort (first row) and the validation cohort (second row). 

Decision curves show the net benefit of referring individuals to a specialist in kidney care if a certain threshold 

probability is exceeded and thus comparing the decision based on the prediction model to the strategies of 

referring all (dashed line) or no individuals (black horizontal line). A threshold probability of, e.g., 10% means 

that individuals with a probability of incidence and progression of CKD are classified as high-risk and should be 

referred to a renal specialist. At the threshold probability the cumulative ‘costs' of false-negatives, i.e. high-risk 
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individuals who are not timely referred, and of false-positives, i.e. low-risk individuals who are unnecessarily 

referred, are assumed to be equal. Threshold probabilities of 10, 15 or 20% correspond to the assumptions that 

the missed referral of one individual who will develop CKD is 9, 5.7 or 4 times worse than one unnecessary 

referral, respectively. The numbers in the left panel (first row) indicate that the net benefit of applying the 

laboratory model: (a) 7.34% at a threshold probability of 10% (i.e. assuming one missed referral of an individual 

who will develop CKD is 9 times worse than one unnecessary referral), which mean that applying the model is 

equivalent to 7 additional true-detections per 100 individuals without increasing the number of false detections, 

(b) 4.53% at a threshold probability of 15%, and (c) 2.74% at a threshold probability of 20%. Note, that the net 

benefit of a perfect prediction model for CKD can maximally attain 16% (equaling the incidence of CKD).  
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Supplemental Figure 3. Scatterplot Comparing eGFR CKDEPI and 
eGFR MDRD (2,3). 
 

Data stem from the development cohort. 

 

 

 

Abbreviations: eGFR, estimated glomerular filtration rate. 
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Comments on the Statistical Analysis  
 

Preliminary work. In ONTARGET the maximum absolute correlation among predictors for the laboratory and 

the clinical model were 0.25 and 0.39. Values of continuous predictors were truncated at their 0.5th and 99.5th 

percentiles. 

Modeling algorithm. Multinomial logistic regression was applied to develop prediction models for the three 

outcome states (4). Using the polytomous outcome had the advantage that potential dependence between the 

different outcome states were incorporated compared to using multiple dichotomous models.  

Fractional polynomials were applied to model nonlinear relationships of continuous predictors with the 

outcome (5). Optimal powers were selected by the RA2-algorithm with the significance level set to 0.157, which 

corresponds roughly to a selection according to the AIC criterion (6). Continuous predictors were roughly scaled 

to [0, 1] to ensure convergence of the modeling algorithm. For categorical predictors variable selection was 

conducted by likelihood-ratio-tests within each cycle of the RA2-algorithm.  

After selection of predictors and fractional polynomials, interactions were tested by including all pair-

wise product interaction terms into the model. If these interactions were (together) significant in the apparent 

model, all interactions were checked by graphical means. In neither the laboratory nor the clinical model 

interactions were significant. If these interactions were significant in a bootstrap resample, then all interactions 

were included into the respective model.  

Model Development and Validation. First, the devised modeling algorithm was applied to the development 

cohort to construct ‘apparent’ prediction models. Second, it was applied to 500 bootstrap resamples to evaluate 

model stability and internal validation. Using 500 bootstrap resamples yields sufficiently small standard 

deviations for the optimism-corrected c-statistics in the clinical model for the outcome states alive without 

incidence or progression of chronic kidney disease (CKD), alive with incidence or progression of CKD, and 

death of 0.008, 0.011, and 0.010, respectively. 

Applying the apparent model on the development cohort will typically give optimistic estimates of 

model performance. Therefore, the model performance was internally and externally evaluated. While internal 

validation focuses on the development process and the quality of the model in a similar population, external 

validation focuses on transportability to another population. 

For internally validated or optimism-corrected estimates, for each bootstrap resample j the complete 

modeling algorithm was repeated and the optimism was estimated by 

 , ,j apparent j testapparent bootstrap bootstrap  , where apparent was the apparent estimate from the development 

data, bootstrapj,apparent was the estimate from the jth bootstrap resample applied to the jth bootstrap resample, and 

bootstrapj,test was the estimate from the jth bootstrap resample applied to the development data (7).  

Predictive accuracy is defined as the mean absolute difference between observed and expected outcome 

probabilities and can be computed for a model with and without predictors (8). The relative improvement in 
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predictive accuracy due to consideration of predictors is termed explained variation (9), ranging from 0% (no 

prognostic relevance) to 100% (perfect prediction). Relative importance of individual predictors can be 

quantified by the drop in explained variation if these predictors are removed from the model (10). The 

proportion of variation explained by individual predictors is given for each predictor (or groups of predictors) in 

Table 3 as the respective partial explained variation divided through the explained variation and multiplied with 

the Nagelkerke-R2 in order to allow direct comparison between the Nagelkerke-R2 of the model with the 

proportion of variation explained by individual predictors. 

Performance Measures. If a performance measure has no direct extension to the polytomous outcome, the 

weighted mean of the three pairwise comparisons is given.  

Shrinkage. Optimism-corrected calibration slopes were used as a global linear shrinkage factors (towards the 

overall mean) to correct the apparent laboratory and clinical models for optimism. The shrunken intercepts 1s

and 2s  are   1 1 1 1 11s s        and   2 2 2 2 21s s       , where 1 and 2 are the apparent 

estimates of the intercepts, 1 and 2  are the linear predictors based on apparent regression coefficients, and s1 

and s2 are global shrinkage factors for outcome 1 (‘alive with incidence or progression of CKD’) and 2 (‘death’), 

respectively. The shrunken coefficients 1is  and 2is  for outcome 1 and 2 for 1,...,i k  are simply
1 1 1i s i s 

1 1 1i s i s 
1 1 1i s i s 

1 1 1i s i s   
1 1 1i s i s  , and 

2 2 2i s i s  . 

Interpretation of Decision Curve Analysis (1). Individuals with type 2 diabetes mellitus who might be at risk 

for chronic kidney disease are currently not automatically transferred to a specialist. By using a prediction 

model, one can categorize individuals into low and high risk of developing chronic kidney disease. An 

individual with a very low predicted probability for incidence or progression of chronic kidney disease might 

not need to be transferred to a specialist, whereas a timely transferal may be necessary for an individual with a 

large predicted probability.  

A threshold probability can be defined as the probability, starting from which an individual should be 

transferred to a specialist, because the potential benefits exceed its potential harms or efforts. Thus the choice of 

the threshold probability depends on the ‘costs’ of false-positives (i.e. low-risk individuals who are 

unnecessarily transferred) relative to the ‘costs’ of false-negatives (i.e. high-risk individuals who are not timely 

transferred). The net benefit of applying a prediction model for a specific threshold probability is defined as the 

true positive rate minus the false positive rate, the latter weighted by the relative costs of a false-positive 

prediction compared to a false negative one. The such-defined net benefit can range from minus infinity up to 

the prevalence of the outcome observed in a study population.  

In order to decide if the net benefit of a prediction model for a specific threshold probability is of 

clinical importance, it can be compared to two hypothetical situations: while in the first, all individuals with type 

2 diabetes mellitus are transferred to specialists to avoid false negatives, in the second situation no individual 

with type 2 diabetes mellitus is transferred to avoid any false positives. The second situation has a net benefit of 

0, since there are neither true positives nor false positives. Therefore, compared to the second situation, a 

prediction model with a positive net benefit is beneficial. In the first situation the net benefit can be computed 
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by using the proportion of individuals who do and do not experience chronic kidney disease. If the net benefit of 

transferring all individuals to specialists is smaller than the net benefit of the prediction model, then the 

application of the prediction model is beneficial.  

A decision curve gives the net benefit for various threshold probabilities for applying the  prediction 

model, for assuming all individuals will experience chronic kidney disease or for assuming all individuals will 

not experience chronic kidney disease. The net benefit of the prediction model of very low or very high 

threshold probabilities is generally similar to the net benefit of assuming all individuals will experience chronic 

kidney disease or all individuals will not experience chronic kidney disease, respectively. Only between these 

two extremes the prediction model may be of value. 
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Supplemental Table 1. Performance of Prediction Models in the 
Development and Validation Cohorts 
for the Outcome ‘Alive without incidence or progression of chronic 
kidney disease’. 

 

 

 

 

 

 

 

 

 

 

 
 

 

1 A multinomial logistic model with three outcomes has two estimates for calibration-in-the-large and the 

calibration slope. In an ideally calibrated prediction model calibration-in-the-large would be 0 and the 

calibration slope would be 1, indicating that predictions are not systematically biased. The optimism-corrected 

calibration slopes are used as shrinkage factors of the prediction models. 

 

  

Performance Measures Laboratory Model Clinical Model 
Explained Variation   
 Nagelkerke-R2   
  optimism-corrected 11.70% 13.02% 
  externally-validated 11.34% 12.66% 

Discrimination   
 C-statistic   
  optimism-corrected 0.68 0.69 
  externally-validated 0.68 0.69 

Calibration 1   
 Calibration-in-the-large    
  optimism-corrected 0 0 
  externally-validated 0.03 -0.04 
 Calibration slope    
  optimism-corrected 0.98 0.91 
  externally-validated 1.01 1.03 
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Supplemental Figure 4. ReceiverOperating Curves (ROC) 

for the Laboratory and the Clinical Model based on the Development 

and Validation Cohort. 
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Supplemental Figure 5. Calibration Plots 
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Calibration plots for the laboratory (first row) and the clinical model (second row) for each outcome state: alive without incidence or progression of CKD, alive 
with incidence or progression of CKD, and death based on internally validated estimates of the development cohort and on the validation cohort. Calibration plots 
depict the agreement of predicted probabilities and observed frequencies of the prediction model (continuous line) and for comparison a perfect prediction model (dashed 
line). Distribution of predicted probabilities is indicated by groups of participants (points). On the bottom the distribution of predicted probabilities for individual participants 
in the development cohort is depicted (vertical lines). Vertical lines upward represent participants with the outcome of the respective column; lines downwards represent 
participants from the other two outcome states. 

Abbreviations: CKD, (incidence or progression of) chronic kidney disease. 
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Supplemental Figure 6. Predicted Probabilities 

for incidence or progression of chronic kidney disease after 5.5 years 
and death within 5.5 years computed by the laboratory model.  

 

Supplemental Figure 6a. Hypothetical male individual aged 60, 65 or 70. 

 

pr
ed

ic
te

d 
pr

ob
ab

il
it

y 
(%

) 
…

 

 

   

  …for incidence of CKD …for death 

pr
ed

ic
te

d 
pr

ob
ab

il
it

y 
(%

) 
…

 

 …for progression of CKD …for death 



Prediction of Chronic Kidney Disease 

13 
 

 

Supplemental Figure 6b. Hypothetical female individual aged 60, 65 or 70. 
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Supplemental Table 2. Prediction Equations 
Supplemental Table 4a: Laboratory Prediction Equation 

The laboratory prediction models includes the following predictors: UACR (mg/g), eGFR CKD-EPI (ml/min 
per 1.73m2), gender and age. 

 

Range of continuous predictors 

Predictor Minimum Maximum 

UACR  (mg/g) 0.75 292.15 

eGFR CKD-EPI (ml/min per 1.73m2) 26.55 111.15 

Age (years) 55 84 

 

Prediction equation 

Outcome state Predictor 
Transformation or 

coding 
Shrunken  

coefficients 

C
K

D
 

Intercept   -0.6727 

Predictors 

Albuminuria stage1 microalbuminuria = 1 -0.1809 

d-UACRtp 
(d-UACRtp+0.1)/5 -5.4497 

[(d-UACRtp+0.1)/5]3 4.7267 

eGFR [(eGFR+0.1)/120]-2 0.0890 

  Gender female = 1 0.0081 

  Age [age+0.1)/90] -0.2088 

D
ea

th
 

Intercept   -5.3823 

Predictors 

Albuminuria stage1 microalbuminuria = 1 0.5402 

d-UACRtp 
(d-UACRtp+0.1)/5 -2.0727 

[(d-UACRtp +0.1)/5]3 1.5816 

eGFR [(eGFR+0.1)/120]-2 0.1120 

  Gender female = 1 0.5981 

  Age [age+0.1)/90] 5.3485 
1 versus normoalbuminuria = 0. 
 

The predicted risk of an individual can be computed in the following manner: 

1) Compute ‘d-UACR to progression’ (d-UACRtp)
1 from UACR (mg/g) at baseline:  

 

 tpd-UACR ln cutpoint UACR (mg/g) , with 

 

30    if  0 UACR (mg/g)  < 30
cutpoint

300    if 30 UACR (mg/g) < 300


  

. 

 
                                                            
1 d-UACRtp was defined as the difference between the participant‐specific cutpoint of developing a new micro‐ or macroalbuminuria and 
UACR at baseline on the log‐scale. A participant‐specific cutpoint was required because new micro‐ or macro‐albuminuria was defined by 
crossing the cutpoints of 30 and 300 mg/g (3.4 and 33.9 mg/mmol), respectively. 
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2) Compute the linear predictor for incidence or progression of CKD ( )rlp x :  

 

   
   

0 1 1

3

tp tp

2

( ) ...

0.76727-0.1809 albuminuria

5.4497 d-UACR 0.1 5 4.7267 d-UACR 0.1 5

0.0890 eGFR 0.1 120 0.0081 female 0.2088 age 0.1 90

r r r rj jlp x x x  



    

   

           

             

 

 

3) Compute the linear predictor for death ( )dlp x :  

 

   
   

0 1 1

3

tp tp

2

( ) ...

5.3823 0.5402 albuminuria

2.0727 d-UACR 0.1 5 1.5816 d-UACR 0.1 5

0.1120 eGFR 0.1 120 0.5981 female 5.3485 age 0.1 90

d d d rj jlp x x x  



    

    

           

             

 

 
4) Conditional probabilities for each outcome y given the predictor vector x are  

 

  ( )( )

1
'alive w/o renal endpoint' |

1 dr lp xlp x
P y x

e e
 

 
, 

 
( )

( )( )
'alive with renal outcome' |

1

r

dr

lp x

lp xlp x

e
P y x

e e
 

 
 and 

 
( )

( )( )
'death' |

1

d

dr

lp x

lp xlp x

e
P y x

e e
 

  .
 

 

Supplemental Table 2b: Clinical Prediction Equation 

The clinical prediction models includes the following predictors: UACR (mg/mmol), eGFR CKD-EPI (ml/min 
per 1.73m2), duration of diabetes (years), glucose (mmol/L), fasting LDL (mmol/L) , waist circumference (cm), 
number of antihypertensive drugs, age (years), gender, race (European, Asian, or Other), and the comorbidities 
peripheral artery disease (i.e. PTA , limb or foot amputation; PAD), stroke/TIA, laser therapy for diabetic 
retinopathy, and MACE. Comorbidity MACE, i.e. major atherosclerotic cardiac events, was defined as 
myocardial infarction, stable or unstable angina, CABG surgery, or PTCA/atherectomy/PCI. For number of 
antihypertensive drugs a score between 0 and 5 was devised, with one point for each group (RAS-blocker, 
calcium-channel-blocker, alpha-blocker, beta-blocker or diuretics) from which drugs were prescribed.  
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Range of continuous predictors 

Predictor Minimum Maximum 

UACR  (mg/g) 0.75 292.15 

eGFR CKD-EPI (ml/min per 1.73m2) 26.55 111.15 

Age 55 84 

Glucose (mmol/L) 3.081 19.5 

Fasting LDL (mmol/L) 0.8 6.097 

Duration of diabetes (years) 0.0060 64.9778 

Waist circumference (cm) 64.02 139 

 

Prediction equation 

Outcome state Predictor Transformation or coding 
Shrunken  

coefficients 

C
K

D
 

Intercept   -0.7382 

Predictors 

d-UACRtp 
(d-UACRtp+0.1)/5 -4.8303 

[(d-UACRtp +0.1)/5]3 4.4693 

eGFR CKD-EPI [(egfr+0.1)/120]-2 0.0775 

Albuminuria stage1 microalbuminuria = 1 -0.2217 

Age (age+0.1)/90 0.7529 

PAD yes = 1 0.3621 

Glucose 
[(glucose+0.1)/20]-1 -1.1451 

ln([(glucose+0.1)/20])*[(glucose+0.1)/20]-1 -0.5042 
Number of antihypertensive 
drugs 

(score from 0 to 5) / 5 0.7667 

Ethnic group3 
Asian = 1 0.3094 

Other = 1 0.2216 

Fasting LDL 
[(ldl+0.1)/10]-2 0.0069 

[(ldl+0.1)/10]2 1.3196 

Duration of diabetes [ln(diabduration+0.003)+6]/12 0.3271 

Stroke/TIA2 yes = 1 0.0865 

Gender4 female = 1 -0.0216 

Waist circumference 
[(waist+0.1)/140]-2 0.1080 

[(waist+0.1)/140]3 0.9222 

MACE2 yes = 1 -0.1053 
Laser therapy for diabetic 
retinopathy2 

yes = 1 -0.1006 
1 versus normoalbuminuria = 0. 
2 versus no = 0. 
3 versus European = 0. 
4 versus male = 0. 
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Outcome state Predictor Transformation or coding 
Shrunken  

coefficients 

D
ea

th
 

Intercept   -5.2880 

Predictors 

d-UACRtp 
(d-UACRtp+0.1)/5 -1.7979 

[(d-UACRtp +0.1)/5]3 1.5969 

eGFR CKD-EPI [(egfr+0.1)/120]-2 0.0990 

Albuminuria stage1 microalbuminuria = 1 0.4115 

Age (age+0.1)/90 5.1527 

PAD2  yes = 1 0.6782 

Glucose 
[(glucose+0.1)/20]-1 -1.4714 

ln([(glucose+0.1)/20])*[(glucose+0.1)/20]-1 -0.6895 

Number of antihypertensive 
drugs 

(score from 0 to 5) / 5 0.2970 

Ethnic group3 
Asian = 1 -0.0353 

Other = 1 0.1458 

Fasting LDL 
[(ldl+0.1)/10]-2 0.0063 

[(ldl+0.1)/10]2 2.5752 

Duration of diabetes [log(diabduration+0.003)+6]/12 0.3132 

Stroke/TIA2 yes = 1 0.3867 

Gender4 female = 1 -0.1904 

Waist circumference 
[(waist+0.1)/140]-2 0.2402 

[(waist+0.1)/140]3 1.3245 

MACE2 yes = 1 0.1769 

Laser therapy for diabetic 
retinopathy2 

yes = 1 -0.0198 
1 versus normoalbuminuria = 0. 
2 versus no = 0. 
3 versus European = 0. 
4 versus male = 0. 
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1) and 4) as in the laboratory model. 
 

2) Compute the linear predictor for incidence or progression of CKD ( )rlp x :  

 

   
   

 

 

3

tp tp

2

1

1

( ) 0.7382 0.2217 albuminuria

4.8303 d-UACR 0.1 5 4.4693 d-UACR 0.1 5

0.0775 eGFR 0.1 120 0.7529 age 0.1 90

0.3621*PAD 1.14513015 glucose 0.1 20

0.5042 glucose 0.1 20 *

rlp x







    

           

           

     

     

 

   

 

2

2

2

ln glucose 0.1 20 0.7667*nDrugs 5+

0.3094*Asian+0.2216*Other+0.0069* ldl 0.1 10

1.3196* ldl 0.1 10 0.3271* ln diabduration 0.003 6 /12

0.0865*stroke 0.0216*female+0.1080* waist 0.1 140

0.92





   

  

          

    

  3
22* waist 0.1 140 0.1053*MACE 0.1006*laser    

 

 

3) Compute the linear predictor for death ( )dlp x : 

 

 

   
   

 

 

3

tp tp

2

1

1

( ) 5.2880+0.4115 albuminuria

1.7979 d-UACR 0.1 5 1.5969 d-UACR 0.1 5

0.0990 eGFR 0.1 120 5.1527 age 0.1 90

0.6782*PAD 1.4714 glucose 0.1 20

0.6895 glucose 0.1 20 *ln gl

dlp x







   

           

           

     

     

 

   

 

2

2

2

ucose 0.1 20 0.2970*nDrugs 5-

0.0353*Asian+0.1458*Other+0.0064* ldl 0.1 10

2.5752* ldl 0.1 10 0.3132* ln diabduration 0.003 6 /12

0.3867*stroke 0.1904*female+0.2402* waist 0.1 140

1.3245* w





   

  

          

    

  3
aist 0.1 140 0.1769*MACE 0.0198*laser    
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