Supplemental Table 2. Prediction Equations Supplemental Table 4a: Laboratory Prediction Equation

The laboratory prediction models includes the following predictors: UACR (mg/g), eGFR CKD-EPI (ml/min per 1.73m²), gender and age.

Range of continuous predictors

Predictor	Minimum	Maximum
UACR (mg/g)	0.75	292.15
eGFR CKD-EPI (ml/min per 1.73m ²)	26.55	111.15
Age (years)	55	84

Prediction equation

Outcome state		Predictor	Transformation or coding	Shrunken coefficients
	Intercept			-0.6727
	Predictors	Albuminuria stage ¹	microalbuminuria = 1	-0.1809
CKD		d-UACR _{tp}	$(d\text{-UACR}_{tp}+0.1)/5$	-5.4497
			$[(d-UACR_{tp}+0.1)/5]^3$	4.7267
		eGFR	$[(eGFR+0.1)/120]^{-2}$	0.0890
		Gender	female = 1	0.0081
		Age	[age+0.1)/90]	-0.2088
	Intercept			-5.3823
ч	Predictors	Albuminuria stage ¹	microalbuminuria = 1	0.5402
Death		Dualitation LUACD	$(d\text{-UACR}_{tp}+0.1)/5$	-2.0727
Ω		d-UACR _{tp}	$[(d-UACR_{tp}+0.1)/5]^3$	1.5816
		eGFR	$[(eGFR+0.1)/120]^{-2}$	0.1120
		Gender	female = 1	0.5981
		Age	[age+0.1)/90]	5.3485

¹ versus normoalbuminuria = 0.

The predicted risk of an individual can be computed in the following manner:

1) Compute 'd-UACR to progression' (d-UACR_{tp})¹ from UACR (mg/g) at baseline:

$$\text{d-UACR}_{_{tp}} = ln \big(\text{cutpoint/UACR} \; (mg/g) \big), \, \text{with}$$

$$cutpoint = \begin{cases} 30 & \text{if } 0 \le UACR \text{ } (mg/g) < 30 \\ 300 & \text{if } 30 \le UACR \text{ } (mg/g) < 300 \end{cases}.$$

 $^{^{1}}$ d-UACR $_{tp}$ was defined as the difference between the participant-specific cutpoint of developing a new micro- or macro-albuminuria and UACR at baseline on the log-scale. A participant-specific cutpoint was required because new micro- or macro-albuminuria was defined by crossing the cutpoints of 30 and 300 mg/g (3.4 and 33.9 mg/mmol), respectively.

2) Compute the linear predictor for incidence or progression of CKD $lp_r(x)$:

$$lp_{r}(x) = \beta_{r0} + \beta_{r1}x_{1} + ... + \beta_{rj}x_{j} =$$

$$= -0.76727 - 0.1809 * albuminuria -$$

$$5.4497 * \left[\left(d-UACR_{tp} + 0.1 \right) / 5 \right] + 4.7267 * \left[\left(d-UACR_{tp} + 0.1 \right) / 5 \right]^{3} +$$

$$0.0890 * \left[\left(eGFR + 0.1 \right) / 120 \right]^{-2} + 0.0081 * female - 0.2088 * \left[\left(age + 0.1 \right) / 90 \right]$$

3) Compute the linear predictor for death $lp_d(x)$:

$$lp_{d}(x) = \beta_{d0} + \beta_{d1}x_{1} + ... + \beta_{rj}x_{j} =$$

$$= -5.3823 + 0.5402 * albuminuria -$$

$$2.0727 * \left[\left(d-UACR_{tp} + 0.1 \right) / 5 \right] + 1.5816 * \left[\left(d-UACR_{tp} + 0.1 \right) / 5 \right]^{3} +$$

$$0.1120 * \left[\left(eGFR + 0.1 \right) / 120 \right]^{-2} + 0.5981 * female - 5.3485 * \left[\left(age + 0.1 \right) / 90 \right]$$

4) Conditional probabilities for each outcome y given the predictor vector x are

$$P(y = \text{'alive w/o renal endpoint'} | x) = \frac{1}{1 + e^{lp_r(x)} + e^{lp_d(x)}},$$

$$P(y = \text{'alive with renal outcome'} | x) = \frac{e^{lp_r(x)}}{1 + e^{lp_r(x)} + e^{lp_d(x)}} \text{ and }$$

$$P(y = \text{'death'} | x) = \frac{e^{lp_d(x)}}{1 + e^{lp_r(x)} + e^{lp_d(x)}}$$

Supplemental Table 2b: Clinical Prediction Equation

The clinical prediction models includes the following predictors: UACR (mg/mmol), eGFR CKD-EPI (ml/min per 1.73m²), duration of diabetes (years), glucose (mmol/L), fasting LDL (mmol/L), waist circumference (cm), number of antihypertensive drugs, age (years), gender, race (European, Asian, or Other), and the comorbidities peripheral artery disease (i.e. PTA, limb or foot amputation; PAD), stroke/TIA, laser therapy for diabetic retinopathy, and MACE. Comorbidity MACE, i.e. major atherosclerotic cardiac events, was defined as myocardial infarction, stable or unstable angina, CABG surgery, or PTCA/atherectomy/PCI. For number of antihypertensive drugs a score between 0 and 5 was devised, with one point for each group (RAS-blocker, calcium-channel-blocker, alpha-blocker, beta-blocker or diuretics) from which drugs were prescribed.

Range of continuous predictors

Predictor	Minimum	Maximum
UACR (mg/g)	0.75	292.15
eGFR CKD-EPI (ml/min per 1.73m ²)	26.55	111.15
Age	55	84
Glucose (mmol/L)	3.081	19.5
Fasting LDL (mmol/L)	0.8	6.097
Duration of diabetes (years)	0.0060	64.9778
Waist circumference (cm)	64.02	139

Prediction equation

Outcome state	Predictor	Transformation or coding	Shrunken coefficients
Intercept			-0.7382
	d-UACR _{tp}	$(d-UACR_{tp}+0.1)/5$	-4.8303
		$[(d-UACR_{tp}+0.1)/5]^3$	4.4693
	eGFR CKD-EPI	$[(egfr+0.1)/120]^{-2}$	0.0775
	Albuminuria stage ¹	microalbuminuria = 1	-0.2217
	Age	(age+0.1)/90	0.7529
	PAD	yes = 1	0.3621
	Glucose	$[(glucose+0.1)/20]^{-1}$	-1.1451
		ln([(glucose+0.1)/20])*[(glucose+0.1)/20] ⁻¹	-0.5042
	Number of antihypertensive drugs	(score from 0 to 5) / 5	0.7667
Predictors	Ethnic group ³	Asian = 1	0.3094
Predictors		Other = 1	0.2216
	Fasting LDL	[(ldl+0.1)/10] ⁻²	0.0069
		$[(1d1+0.1)/10]^2$	1.3196
	Duration of diabetes	[ln(diabduration+0.003)+6]/12	0.3271
	Stroke/TIA ²	yes = 1	0.0865
	Gender ⁴	female = 1	-0.0216
		$[(waist+0.1)/140]^{-2}$	0.1080
Waist circumference	$[(waist+0.1)/140]^3$	0.9222	
	MACE ²	yes = 1	-0.1053
	Laser therapy for diabetic retinopathy ²	yes = 1	-0.1006
versus normoalt versus no = 0. versus Europear versus male = 0.	retinopathy ² comminuria = 0. $n = 0.$	yes = 1	-0.100

o	utcome state	Predictor	Transformation or coding	Shrunken coefficients
	Intercept			-5.2880
		d-UACR _{tp}	(d-UACR _{tp} +0.1)/5	-1.7979
			$[(d-UACR_{tp}+0.1)/5]^3$	1.5969
		eGFR CKD-EPI	$[(egfr+0.1)/120]^{-2}$	0.0990
		Albuminuria stage ¹	microalbuminuria = 1	0.4115
		Age	(age+0.1)/90	5.1527
		PAD^2	yes = 1	0.6782
	Predictors	Glucose	[(glucose+0.1)/20] ⁻¹	-1.4714
Death			ln([(glucose+0.1)/20])*[(glucose+0.1)/20] ⁻¹	-0.6895
		Number of antihypertensive drugs	(score from 0 to 5) / 5	0.2970
		Ethnic group ³	Asian = 1	-0.0353
			Other $= 1$	0.1458
		Fasting LDL	$[(ldl+0.1)/10]^{-2}$	0.0063
			$[(ldl+0.1)/10]^2$	2.5752
		Duration of diabetes	[log(diabduration+0.003)+6]/12	0.3132
		Stroke/TIA ²	yes = 1	0.3867
		Gender ⁴	female = 1	-0.1904
		Waist circumference	[(waist+0.1)/140] ⁻²	0.2402
			$[(waist+0.1)/140]^3$	1.3245
		MACE ²	yes = 1	0.1769
		Laser therapy for diabetic retinopathy ²	yes = 1	-0.0198

versus normoalbuminuria = 0.

versus no = 0.

versus European = 0.

versus male = 0.

1) and 4) as in the laboratory model.

2) Compute the linear predictor for incidence or progression of CKD $lp_r(x)$:

$$\begin{split} lp_r(x) &= -0.7382 - 0.2217 * \text{albuminuria} - \\ &4.8303 * \left[\left(\text{d-UACR}_{tp} + 0.1 \right) \middle/ 5 \right] + 4.4693 * \left[\left(\text{d-UACR}_{tp} + 0.1 \right) \middle/ 5 \right]^3 + \\ &0.0775 * \left[\left(\text{eGFR} + 0.1 \right) \middle/ 120 \right]^{-2} + 0.7529 * \left[\left(\text{age} + 0.1 \right) \middle/ 90 \right] + \\ &0.3621 * \text{PAD} - 1.14513015 * \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right]^{-1} - \\ &0.5042 * \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right]^{-1} * \ln \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right] + 0.7667 * \text{nDrugs} \middle/ 5 + \\ &0.3094 * \text{Asian} + 0.2216 * \text{Other} + 0.0069 * \left[\left(\text{Idl} + 0.1 \right) \middle/ 10 \right]^{-2} \\ &1.3196 * \left[\left(\text{Idl} + 0.1 \right) \middle/ 10 \right]^2 + 0.3271 * \left[\ln \left(\text{diabduration} + 0.003 \right) + 6 \right] \middle/ 12 + \\ &0.0865 * \text{stroke} - 0.0216 * \text{female} + 0.1080 * \left[\left(\text{waist} + 0.1 \right) \middle/ 140 \right]^{-2} + \\ &0.9222 * \left[\left(\text{waist} + 0.1 \right) \middle/ 140 \right]^3 - 0.1053 * \text{MACE} - 0.1006 * \text{laser} \end{split}$$

3) Compute the linear predictor for death $lp_d(x)$:

$$\begin{split} lp_d(x) &= -5.2880 + 0.4115 * \text{albuminuria} - \\ &1.7979 * \left[\left(\text{d-UACR}_{tp} + 0.1 \right) \middle/ 5 \right] + 1.5969 * \left[\left(\text{d-UACR}_{tp} + 0.1 \right) \middle/ 5 \right]^3 + \\ &0.0990 * \left[\left(\text{eGFR} + 0.1 \right) \middle/ 120 \right]^{-2} + 5.1527 * \left[\left(\text{age} + 0.1 \right) \middle/ 90 \right] + \\ &0.6782 * \text{PAD} - 1.4714 * \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right]^{-1} - \\ &0.6895 * \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right]^{-1} * \ln \left[\left(\text{glucose} + 0.1 \right) \middle/ 20 \right] + 0.2970 * \text{nDrugs} \middle/ 5 - \\ &0.0353 * \text{Asian} + 0.1458 * \text{Other} + 0.0064 * \left[\left(\text{ldl} + 0.1 \right) \middle/ 10 \right]^{-2} \\ &2.5752 * \left[\left(\text{ldl} + 0.1 \right) \middle/ 10 \right]^2 + 0.3132 * \left[\ln \left(\text{diabduration} + 0.003 \right) + 6 \right] \middle/ 12 + \\ &0.3867 * \text{stroke} - 0.1904 * \text{female} + 0.2402 * \left[\left(\text{waist} + 0.1 \right) \middle/ 140 \right]^{-2} + \\ &1.3245 * \left[\left(\text{waist} + 0.1 \right) \middle/ 140 \right]^3 + 0.1769 * \text{MACE} - 0.0198 * \text{laser} \end{split}$$