Ubung 4: Long short-term memory neural networks

In this exercise you will learn how to use a specific type of a recurrent neural network, called long short-
term memory (LSTM) neural network. LSTMs will be used for language modelling, and specifically, will
be applied for the sentence completion task. Your goalis to train LSTMs to generate sentences starting
from seed sentences, and to asses the quality of the output. Below is an example of a sequence gener-
ated by an LSTM network for a fixed input, as well as the expected completion of the input sequence.
This network has been trained on the text corpus generated from PubMed abstracts. As you can see,
the output of the network and the expected completion do not quite match.

Seed Sequence

purposes of this study were to use functional magnetic resonance imaging to investigate the immediate
changes in functional connectivity (fc) between brain regions that process and modulate the pain
experience after different types of manual therapies (mt) and to identify reductions in experimentally
induced myalgia and

RNN Generated

< --- > maintaining rls-quality acetonide with a induction icds derivative flu-like

Actual

< --- » changes in local and remote pressure pain sensitivity.

Try to train a better network!

This exercise re-uses Python code for the analyzes of LSTM networks from this public notebook
https://github.com/WillKoehrsen/recurrent-neural-networks/blob/master/notebooks/Quick%20Start%20to%20Rec
You are encouraged to familiarize yourself with the content presented there, which focuses on build-

ing a language model for patent abstracts.

%load_ext autoreload
%autoreload 2

import numpy as np

import pandas as pd

import keras

import utils

import re

from IPython.display import display, HTML

Get data

We have prepared a small dataset consisting of randomized controlled trials PubMed ab-
stracts. This is a very small subset of a public dataset available here (https://github.com/Franck-
Dernoncourt/pubmed-rct).

abstracts = []
with open(’./data/processed-abstracts.txt’, ’r’) as f:
for a in f.readlines():
abstracts.append(utils.format_sequence(a))

for a in abstracts[:5]:
print(a)

This study analyzed liver function abnormalities in heart failure patients admitted
Minimally invasive endovascular aneurysm repair (EVAR) could be a surgical techniq
The aim of this study was to analyse the cost-effectiveness and cost-utility of EVAR
Evidence suggests that individuals with social anxiety demonstrate vigilance to soc:

Exposure to diesel exhaust causes inflammatory responses

filters="17%; [\\]"_‘{|}~\t\n’

training_len=25

lower=False

word_1idx, idx_word, num_words, word_counts, \

texts, sequences, features, labels = utils.make_sequences(
abstracts, training_len, lower, filters)

X_train, y_train = utils.make_dataset(features, labels, num_words)

There are 15263 unique words.
There are 7142 sequences.

Training the LSTM model

We will train our LSTM model for 50 epochs, and analyze the quality of its ouput.

model_pubmed = keras.Sequential()

Embedding layer
model_pubmed.add (
keras.layers.Embedding(
input_dim=1len(word_idx) + 1,
output_dim=100,
weights=None,
trainable=True))

Recurrent layer
model_pubmed.add (
keras.layers.LSTM(
64, return_sequences=False, dropout=0.1,
recurrent_dropout=0.1))

Fully connected layer
model_pubmed.add(keras.layers.Dense(64, activation="relu’))

Dropout for regularization
model_pubmed.add(keras.layers.Dropout(0.5))

Output layer
model_pubmed.add(keras.layers.Dense(len(word_idx) + 1, activation=’softmax’))

Compile the model
model_pubmed. compile(
optimizer="adam’, loss=’categorical_crossentropy’, metrics=[’accuracy’])

model_pubmed.summary ()

Model: ”sequential_2”

Layer (type) Output Shape Param #

enbedding 2 (Embedding) (None, None, 100) 1526300
lstm2 (LSTM) (Nome, 64) 42240
dense_3 (Dense) (None, 64) a160

Total params: 2,564,795
Trainable params: 2,564,795
Non-trainable params: 0

epochs = 50
batch_size = 512
h = model_pubmed.fit(X_train, y_train, epochs = epochs, batch_size = batch_size)

/home/asan/.Virtualenvs3.6/keras/1lib/python3.6/site-packages/tensorflow_core/pyt
”Converting sparse IndexedSlices to a dense Tensor of unknown shape. ”

Epoch 1/50
7142/7142 [==============================] - 25 297us/step - loss: 9.6210 - accurac
Epoch 2/50
7142/7142 [==============================] - 2s 255us/step - loss: 9.1139 - accurac
Epoch 3/50
7142/7142 [==============================] - 25 255us/step - loss: 7.1189 - accurac
Epoch 4/50
7142/7142 [==============================] - 2s 253us/step - loss: 6.6361 - accurac
Epoch 5/50
7142/7142 [==============================] - 25 255us/step - loss: 6.4840 - accurac
Epoch 6/50
T142/7142 [==============================] - 2s 254us/step - loss: 6.4259 - accurac
Epoch 7/50
7142/7142 [==============================] - 25 256us/step - loss: 6.3805 - accurac
Epoch 8/50
T142/7142 [==============================] - 2s 256us/step - loss: 6.3463 - accurac
Epoch 9/50
7142/7142 [==============================] - 25 255us/step - loss: 6.3287 - accurac
Epoch 10/50
T142/7142 [==============================] - 25 257us/step - loss: 6.2983 - accurac

Epoch 11/50

7142 /7142 [==============================] - 25 258us/step - loss: 6.2657 - accurac
Epoch 12/50

7142/7142 [==============================] - 25 256us/step - loss: 6.2189 - accurac
Epoch 13/50
7142/7142 [==============================] - 2s 255us/step - loss: 6.1559 - accurac
Epoch 14/50
7142/7142 [==============================] - 25 255us/step - loss: 6.1049 - accurac
Epoch 15/50
7142/7142 [==============================] - 25 254us/step - loss: 6.0649 - accurac
Epoch 16/50
7142/7142 [==============================] - 25 254us/step - loss: 6.0255 - accurac
Epoch 17/50
T142/7142 [==============================] - 2s 256us/step - loss: 6.0113 - accurac
Epoch 18/50
7142/7142 [==============================] - 25 259us/step - loss: 5.9811 - accurac
Epoch 19/50
T142/7142 [==============================] - 25 267us/step - loss: 5.9710 - accurac
Epoch 20/50
7142/7142 [==============================] - 25 257us/step - loss: 5.9561 - accurac
Epoch 21/50
7142 /7142 [==============================] - 25 269us/step - loss: 5.9411 - accurac
Epoch 22/50
7142/7142 [==============================] - 25 265us/step - loss: 5.9322 - accurac
Epoch 23/50
7142 /7142 [==============================] - 25 263us/step - loss: 5.9242 - accurac
Epoch 24/50
7142/7142 [==============================] - 25 258us/step - loss: 5.9123 - accurac
Epoch 25/50
T142/7142 [==============================] - 2s 264us/step - loss: 5.9147 - accurac
Epoch 26/50
7142/7142 [==============================] - 25 272us/step - loss: 5.9091 - accurac
Epoch 27/50
T142/7142 [==============================] - 25 277us/step - loss: 5.8974 - accurac
Epoch 28/50
7142/7142 [==============================] - 25 258us/step - loss: 5.8850 - accurac
Epoch 29/50
T142/7142 [==============================] - 25 258us/step - loss: 5.8762 - accurac

Epoch 30/50

7142 /7142 [==============================] - 25 257us/step - loss: 5.8793 - accurac
Epoch 31/50

7142/7142 [==============================] - 25 259us/step - loss: 5.8736 - accurac
Epoch 32/50
7142/7142 [==============================] - 25 264us/step - loss: 5.8634 - accurac
Epoch 33/50
7142/7142 [==============================] - 25 260us/step - loss: 5.8543 - accurac
Epoch 34/50
7142/7142 [==============================] - 25 267us/step - loss: 5.8587 - accurac
Epoch 35/50
7142/7142 [==============================] - 25 271us/step - loss: 5.8449 - accurac
Epoch 36/50
7142 /7142 [==============================] - 25 266us/step - loss: 5.8352 - accurac
Epoch 37/50
7142/7142 [==============================] - 25 274us/step - loss: 5.8294 - accurac
Epoch 38/50
T142/7142 [==============================] - 25 270us/step - loss: 5.8282 - accurac
Epoch 39/50
7142/7142 [==============================] - 25 255us/step - loss: 5.8142 - accurac
Epoch 40/50
T142/7142 [==============================] - 2s 256us/step - loss: 5.8021 - accurac
Epoch 41/50
7142/7142 [==============================] - 25 256us/step - loss: 5.7839 - accurac
Epoch 42/50
7142 /7142 [==============================] - 25 255us/step - loss: 5.7610 - accurac
Epoch 43/50
7142/7142 [==============================] - 25 257us/step - loss: 5.7494 - accurac
Epoch 44/50
7142 /7142 [==============================] - 25 256us/step - loss: 5.7353 - accurac
Epoch 45/50
7142/7142 [==============================] - 25 256us/step - loss: 5.7184 - accurac
Epoch 46/50
T142/7142 [==============================] - 25 258us/step - loss: 5.7121 - accurac
Epoch 47/50
7142/7142 [==============================] - 25 259us/step - loss: 5.6981 - accurac
Epoch 48/50
T142/7142 [==============================] - 2s 264us/step - loss: 5.6825 - accurac

Epoch 49/50

T142/7142 [==============================] - 25 262us/step - loss: 5.6606 - accurac
Epoch 50/50

7142/7142 [==============================] - 25 275us/step - loss: 5.6548 - accurac
Check the reconstruction quality of the trained network. How good is the network at predicting the

completion of sentences.

for i in utils.generate_output(model_pubmed, sequences, idx_word,
seed_length = 25, new_words = 10,
diversity = 0.75):
display (HTML(7))
Seed Sequence

This prospective, randomised, two-arm clinical trial aims to investigate the feasibility, safety and ef-
fectiveness of transarterial chemoembolisation (TACE) combined with

RNN Generated

<—>the AF to delirium) polyester abrupt mental NNS forage

Actual

<—>the endovascular implantation of an iodine- seed strand for the

Check the generalization property of the network on an unseen input sequence

s = ”"Randomized controlled trials (RCTs) are the hallmark of evidence-based medi
display(
HTML (utils.seed_sequence(model_pubmed, s, word_idx, idx_word, diversity=0.75

)
Input Seed Network Output

Randomized controlled trials (RCTs) are the hallmark of evidence-based medicine and form the basis
fortranslating research data into clinical practice. This review summarizes commonly applied designs
and quality indicators of RCTs to provide guidance in interpreting and critically evaluating clinical
research data. of mortality and the ER of body measured in)

You can also check the “embeddings” learned for individual words in the corpus, by analyzing nearest
neighborsin the embedding space. Ideally, only similar words would cluster together, while dissimilar
words would be embedded far away from each other.

my_embs = utils.get_embeddings(model_pubmed)
utils.find_closest(’infarction’, my_embs, word_idx, idx_word)

Query: dinfarction

Word: dinfarction Cosine Similarity: 1.0

Word: musicians Cosine Similarity: 0.6987000107765198
Word: turnover Cosine Similarity: 0.6937999725341797
Word: dysfunction Cosine Similarity: 0.6894000172615051
Word: haemorrhage Cosine Similarity: 0.6880999803543091
Word: volumetric Cosine Similarity: 0.6876000165939331
Word: hCG Cosine Similarity: 0.6833999752998352
Word: hospitals Cosine Similarity: 0.6829000115394592
Word: advice Cosine Similarity: 0.6809999942779541
Word: laser Cosine Similarity: 0.6779999732971191
utils.find_closest(’relapse’, my_embs, word_idx, -idx_word)
Query: relapse

Word: relapse Cosine Similarity: 1.0

Word: allergen Cosine Similarity: 0.7519000172615051
Word: frequent Cosine Similarity: 0.7301999926567078
Word: fiber Cosine Similarity: 0.7296000123023987
Word: road Cosine Similarity: 0.7279000282287598
Word: ectopic Cosine Similarity: 0.7258999943733215
Word: ST-segment-elevation Cosine Similarity: 0.7139999866485596
Word: persistent Cosine Similarity: 0.7050999999046326
Word: groin Cosine Similarity: 0.6998999714851379
Word: SHM Cosine Similarity: 0.6984000205993652

Task 1: Train a better LSTM network. Train a better language model

Your task will be to train a better LSTM model and assess the quality of the generated text. In particular,
you can try out training a network on shorter or longer sequence lengths (training_len). Other
hyperparameters you could try out are: batch size, and the dimension of the recurrent layer. At a
minimum, you should be able to overfit the given dataset, i.e., there should be very little difference
between the predicted and the expected completions. In your report try to analyze how the network
builds the language model, i.e., what principle does it use to “understand” the meaning of individual
words?

Bonus task: Get more samples and train an even better lanuage model

Highly encouraged, but not necessary to get the full grade

Download the PubMed-RCT dataset (https://github.com/Franck-Dernoncourt/pubmed-rct) (20k or
200k) and prepare a bigger corpus (within the limits of your machine) to train your LSTM models on.
Analyze these language models! Keep in mind that, the processed dataset provided to you in this
exercise contains sentences labelled with “BACKGROUND” from the PubMed-RCT20k dataset.

	Übung 4: Long short-term memory neural networks
	Get data
	Training the LSTM model
	Task 1: Train a better LSTM network. Train a better language model
	Bonus task: Get more samples and train an even better lanuage model

