The IDEAS network: Training and research under one umbrella
29. November 2018

Thomas Jaki

Disclaimer

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

\section*{Current Statistics training | Mathematics |
| :---: |
| $\substack{\text { sinabicics }}$ |}

Traditional training in Statistics is often

- very general (MSc level)
- highly specialised (PhD level)
- completely isolated from practice
- neglecting transferable skills

What is IDEAS

- Pan-European training network
- Focus on early drug development
- Close interaction between academia

Objectives

a) train early-stage researchers in state of the art methods for designing, evaluating and analysing early phase studies
b) develop novel methodology for early phase studies through individually supervised, collaborative, research projects
c) provide an international, collaborative environment in which the academic research experience is paired with the challenges of undertaking drug development within the private sector
d) raise awareness about cutting edge methods for designing and analysing early phase studies among trialists and clinicians alike

Set-up

Mathematics \& Statistics

Lancaster University

- 5 academic partners
- 3 industry partners
- Several associated partners (mostly industry)
- 14 early stage researchers (ESRs)

Training

(i) individually supervised research projects
(ii) transnational, cross-sectorial secondments
(iii) network-wide training activities
(iv) individual training activities

Secondments

- Cross-sectorial
- Cross-national
- Minimum 3 months
- Research and daily work

Network-wide training

- A week-long kick-off event
- three week-long summer schools
- e-learning courses in statistical methodology
- a think tank
- surgery sessions
- dissemination workshop

Network-wide training

Mathematics \& Statistics

Lancaster University *

- Statistics
- Practical skills
- Networking

More on IDEAS

Website www.ideas-itn.eu email ideas@lancaster.ac.uk Twitter @IDEAS_ITN

Motivation (I)

Consider a trial with two arms and binary outcomes which aims to find the superior arm.

Motivation (I)

Consider a trial with two arms and binary outcomes which aims to find the superior arm.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Motivation (I)

Consider a trial with two arms and binary outcomes which aims to find the superior arm.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Q: To which arm a next patient should be assigned?

Motivation (I)

Consider a trial with two arms and binary outcomes which aims to find the superior arm.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Q: To which arm a next patient should be assigned?
We would like to

- make a reliable recommendation (high statistical power)
- maximize the proportion of the population on the superior arm

Motivation (II)

Mathematics
Lancaster University

1. Option 1. Earn

Assign next patients to 2nd arm

Motivation (II)

1. Option 1. Earn

Assign next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

Motivation (II)

1. Option 1. Earn

Assign next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

2. Option 2. Learn

Assign next patient to arm we know least about (e.g. the Shannon information)

Motivation (II)

1. Option 1. Earn

Assign next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

2. Option 2. Learn

Assign next patient to arm we know least about (e.g. the Shannon information)

Challenges:

- Unethical (low number of treated patients)

Current approaches

- Fixed randomization
- Randomized play the winner
- Current belief (maximum point estimate)
- Optimal multi-arm bandit (MAB) with dynamic programming

Back to information measưteres jucs

The Shannon information (entropy)

$$
h(f)=-\int_{\mathbb{R}} f(z) \log f(z) \mathrm{d} z
$$

Back to information measultess icics

The Shannon information (entropy)

$$
h(f)=-\int_{\mathbb{R}} f(z) \log f(z) \mathrm{d} z
$$

In the example above,

$$
h(\operatorname{arm} 1)=h(\operatorname{arm} 2)
$$

This information does not reflect our specific interest in the superior arm

It shows the amount of information needed to answer the question
What is the success probability?

Weighted information

Consider a two-fold experiment:
(i) what is the probability of success
(ii) is the probability of success close to a target, γ

Weighted information

Consider a two-fold experiment:
(i) what is the probability of success
(ii) is the probability of success close to a target, γ

A: The weighted Shannon information

$$
h_{\phi}(f)=-\int_{\mathbb{R}} \phi(z) f(z) \log f(z) \mathrm{d} z
$$

Weight Function

The Beta-form weight function

$$
\begin{equation*}
\phi_{n}(p)=\Lambda(\gamma, x, n) p^{\gamma \sqrt{n}}(1-p)^{(1-\gamma) \sqrt{n}} \tag{1}
\end{equation*}
$$

Methods

- Model probability of success with a Beta distribution
- α is the true probability of success
- γ is the target probability (for instance, $\gamma=0.999$)

Theorem

Let $h\left(f_{n}\right)$ and $h^{\phi_{n}}\left(f_{n}\right)$ be the standard and weighted differential entropies. Then,

$$
\lim _{n \rightarrow \infty}\left(\left[h^{\phi_{n}}\left(f_{n}\right)-h\left(f_{n}\right)\right]-\frac{1}{2}\left(\frac{(\alpha-\gamma)^{2}}{\alpha(1-\alpha)}\right) n^{2 \kappa-1}+\omega\right)=0
$$

Methods

- Model probability of success with a Beta distribution
- α is the true probability of success
- γ is the target probability (for instance, $\gamma=0.999$)

Theorem

Let $h\left(f_{n}\right)$ and $h^{\phi_{n}}\left(f_{n}\right)$ be the standard and weighted differential entropies. Then,

$$
\lim _{n \rightarrow \infty}\left(\left[h^{\phi_{n}}\left(f_{n}\right)-h\left(f_{n}\right)\right]-\frac{1}{2}\left(\frac{(\alpha-\gamma)^{2}}{\alpha(1-\alpha)}\right) n^{2 \kappa-1}+\omega\right)=0
$$

$$
\hat{\delta}_{n_{j}}^{(\kappa)}=\frac{\left(\hat{p}_{n_{j}}-\gamma\right)^{2}}{\hat{p}_{n_{j}}\left(1-\hat{p}_{n_{j}}\right)} n_{j}^{2 \kappa-1}
$$

Arm selection algorithm:

1. Start from $\hat{\delta}_{\beta_{i}}^{(\kappa)}, i=1, \ldots, m$
2. Observed n_{i} and x_{i} outcomes for the arm $A_{i}, i=1, \ldots, m$
3. $\operatorname{Arm} A_{j}$ is selected if it satisfies

$$
\hat{\delta}_{n_{j}}^{(\kappa)}=\inf _{i=1, \ldots, m} \hat{\delta}_{n_{i}}^{(\kappa)}
$$

4. Repeat 2-3 until the total number of patients is reached.

Note: Randomize in case of tie.

Illustration. Two arms trial| ${ }^{\text {anhemandics }}$

Consider the trial with $m=2$ arms $\left(\alpha_{1}=0.5\right.$ and $\left.\alpha_{2}=0.7\right)$, $n=75$ patients

$$
\text { Prior : } \quad \hat{p}=(0.99,0.99) ; \quad \beta=(2,2)
$$

Alternative: Constrained rand. dynamic programming (Williamson et.al, 2016)

Illustration. Two arms trial ${ }^{\text {Matanematics }}$

Consider the trial with $m=2$ arms $\left(\alpha_{1}=0.5\right.$ and $\left.\alpha_{2}=0.7\right)$, $n=75$ patients

$$
\text { Prior : } \quad \hat{p}=(0.99,0.99) ; \quad \beta=(2,2)
$$

Alternative: Constrained rand. dynamic programming (Williamson et.al, 2016)

Numerical study

We consider two trials with $m=4$ treatments (Villar et.al, 2015)
Trial 1: $N_{1}=423, p=[0.3,0.3,0.3,0.5]^{\mathrm{T}}$
Trial 2: $N_{2}=80, p=[0.3,0.4,0.5,0.6]^{\mathrm{T}}$.

$$
\text { Hypothesis } \quad H_{0}: p_{0} \geq p_{i} \text { for } i=1,2,3
$$

with the family-wise error rate calculated at $p_{0}=\ldots=p_{3}=0.3$

$$
\text { Prior : } \quad \hat{p}=(0.99,0.99,0.99,0.99) ; \quad \beta=(5,2,2,2)
$$

We study:

- the type-I error rate (α)
- statistical power ($1-\eta$)
- expected number of successes (ENS)

Comparators:

- MAB approach based on the Gittins index
- Fixed randomization

\section*{Numerical study. Results | Matamanacs |
| :---: |
| $\substack{\text { Bxabisicics }}$ |
 Lancaster University}

Trial 1

Method	$H_{0}: p_{0}=p_{1}=p_{2}=p_{3}=0.3$			$H_{1}: p_{0}=p_{1}=p_{2}=0.3, p_{3}=0.5$		
	α	$p^{*}($ s.e $)$	ENS(s.e.)	(1- 1)	p^{*} (s.e.)	ENS (s.e.)
MAB	0.05	0.25 (0.18)	126.7 (9.4)	0.43	0.83 (0.10)	198.3 (13.7)
WE ($\kappa=0.55$)	0.05	0.22 (0.20)	126.9 (9.4)	0.55	0.83 (0.18)	197.1 (17.8)

\section*{Numerical study. Results | Mathematics |
| :---: |
| 8 Stataticics |
| $\substack{\text { nen }}$ |}

Trial 1

Method	$H_{0}: p_{0}=p_{1}=p_{2}=p_{3}=0.3$			$H_{1}: p_{0}=p_{1}=p_{2}=0.3, p_{3}=0.5$		
	α	$p^{*}(s . e)$	ENS(s.e.)	$(1-\eta)$	$p^{*}($ s.e. $)$	ENS (s.e.)
MAB	0.05	0.25 (0.18)	126.7 (9.4)	0.43	0.83 (0.10)	198.3 (13.7)
WE ($\kappa=0.55$)	0.05	0.22 (0.20)	126.9 (9.4)	0.55	0.83 (0.18)	197.1 (17.8)
FR	0.05	0.25 (0.02)	126.9 (9.4)	0.82	0.25 (0.02)	147.9 (9.6)
WE ($\kappa=0.65$)	0.05	0.23 (0.13)	126.9 (9.4)	0.87	0.74 (0.10)	189.3 (13.7)

 Lancaster University

Trial 2

Method	$p_{0}=p_{1}=p_{2}=p_{3}=0.3$			$p_{0}=0.3, p_{1}=0.4, p_{2}=0.5, p_{3}=0.6$		
	α	p^{*} (s.e)	ENS(s.e.)	($1-\eta$)	$p^{*}($ s.e. $)$	ENS (s.e.)
MAB	0.00	0.25 (0.13)	24.0 (4.10)	0.00	0.49 (0.21)	41.6 (5.4)
WE ($\kappa=0.55$)	0.01	0.20 (0.15)	24.0 (4.10)	0.11	0.50 (0.27)	40.7 (5.9)

\section*{Numerical study. Results | Matamanacs |
| :---: |
| $\substack{\text { Bxabisicics }}$ |}

Trial 2

Method	$p_{0}=p_{1}=p_{2}=p_{3}=0.3$			$p_{0}=0.3, p_{1}=0.4, p_{2}=0.5, p_{3}=0.6$		
	α	p^{*} (s.e)	ENS(s.e.)	(1-q)	$p^{*}(s . e$.	ENS (s.e.)
MAB	0.00	0.25 (0.13)	24.0 (4.10)	0.00	0.49 (0.21)	41.6 (5.4)
WE ($\kappa=0.55$)	0.01	0.20 (0.15)	24.0 (4.10)	0.11	0.50 (0.27)	40.7 (5.9)
FR	0.05	0.25 (0.04)	24.0 (4.10)	0.50	0.25 (0.04)	36.0 (4.3)
WE ($\kappa=0.65$)	0.05	0.24 (0.07)	24.0 (4.05)	0.52	0.47 (0.21)	40.2 (4.8)

Conclusion

- Simple, intuitively clear, can be computed by non-statisticians
- Penalty parameter κ reflects the trade-off between ENS and Power
- Performs better than currently used approaches

	MAB	FR
Power	higher	same
ENS	same	higher

- Can be applied to any trial with the target $\gamma \in(0,1)$
- Theoretical result: the design is consistent
- The criterion can be generalized for multinomial outcomes

