MEDICAL UNIVERSITY OF VIENNA Anatomy and physiology of the anterior eye segment R.M. Werkmeister^{1,2}, H. Stegmann^{1,2}, M. Pfister^{1,2}, V. Aranha dos Santos¹, G. Schmidinger³, C. Vass³, L. Schmetterer^{1,2,4}, G. Garhöfer⁵

1 Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Austria

2 Christian Doppler Laboratory for Ocular Effects of Thiomers, Vienna, Austria 3 Department of Ophthalmology, Medical University of Vienna, Vienna, Austria

Objective

To visualize the morphology and acquire functional parameters of the anterior eye segment (AS) using ultrahigh-resolution OCT.

Methods

A custom-built UHR-OCT was employed for noncontact in vivo imaging [1-3].

System specifications

Туре	SD-OCT
Detector	CMOS 4096 pixel
Acquistion rate	max 140.000 A-scans/s
Central wavelength	800 nm
Spectral bandwidth	170 nm
Axial resolution	1.3 μm in tissue
Lateral resolution	20 μm

Cornea

UHR-OCT image of a healthy cornea. TF, tear film; EP, epithelium; BLE, basal layer of epithelium; BL, Bowman's layer; ST stroma; DM, Descemet's corneal membrane; ED, endothelium.

Acanthamoeba keratitis

(a) Radial keratoneuritis with thickened corneal nerve and morphological changes in the DM-endothelial complex. (b) Defects in epithelium and anterior stroma and at least three Acanthamoeba cysts visible in UHR-OCT.

Fuchs endothelial dystrophy

UHR-OCT imaging guttatae in the endotheliun thickening Descemet membrane in a 60 year old female patient.

Keratoconus

4 Singapore Eye Research Institute, Singapore 5 Department of Clinical Pharmacology, Medical University Vienna, Austria

neovascularization and calcifications/lipids in the anterior stroma in a 34 vear old male patient

reveals

Epithelial thickness map

MIGS devices in glaucoma patients Stegmann canal expander

XEN Gel Stent

Posterior lens

TM, trabecular meshwork; SC. Schlemm's canal: CC. collector channel; LPV, limbal palisades of Vogt; ED, cornea endothelium; DM, Descemet's membrane; ST, corneal stroma; TF, tear film.

Contact: rene.werkmeister@meduniwien.ac.at

Precorneal tear film **Tear film thickness & tear film dynamics**

Tear film lipid layer

En face lipid layer patterns [3].

Conclusion

UHR-OCT

- 1. Provides visualization of AS morphology and function with remarkable 3D detail
- 2. Helps with fast and acurate diagnosis of ocular pathologies
- 3. Provides objective markers for comparison of healthy and diseased eyes
- 4. Can be a helpful tool in planning of surgical interventions, treatment monitoring and postop managment

References [1] Werkmeister et al., *Biomed Opt Express 2017* [2] Aranha dos Santos et al., Biomed Opt Express 2015

[3] Aranha dos Santos et al., Biomed Opt Express 2016

