

# Improved Mask R-CNN for Nuclei Segmentation in Histologic Images

## Benjamin Bancher<sup>1</sup>, Amirreza Mahbod<sup>2</sup>, Isabella Ellinger<sup>2</sup>, Georg Dorffner<sup>1</sup>

<sup>1</sup> Section for Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria <sup>2</sup> Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria

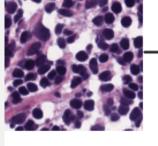
### Introduction

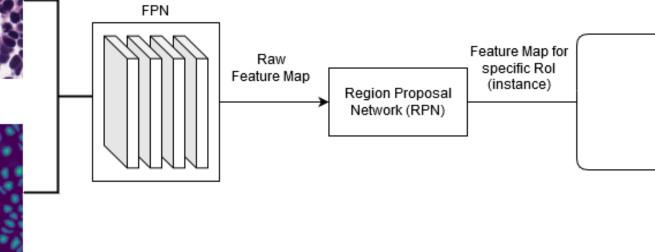
- > Digital pathology supports pathologists' workflows
- > Nuclei instance segmentation is a key step for quantitative analysis in digital pathology
- > Most current image processing-based and machine learning-based methods separate touching or overlapping nuclei in post-processing
- > Detection-based models such as Mask R-CNN [1] aim to overcome this challenge in a unified manner and have rarely been explored
- > We therefore propose to use Mask R-CNN for nuclei instance segmentation and perform analysis on the impact and potential of possible improvements

### Methods

ResNet

**Proposed modified Mask R-CNN architecture adapted for** binary instance segmentation with distance maps





- $\succ$  4-channel inputs (raw RGB images + distance maps) are fed to the model (refer to the example for details)
- > Feature Pyramid Network in ResNet performs feature extraction
- $\succ$  Region Proposal Network (RPN) then implements binary classification as well as Region of Interest (RoI) estimation
- > Rols are aligned with their features using the Rol-Align algorithm for final instance features
- $\succ$  Features within each RoI (= instance) get passed to the second stage and mask generation and localization are performed

> Kumar et al. (2017) dataset [2]: used for training (16 images) and test performance (14 images)

Stats Nr. o Imag Nr. nucl Nr. o

> Aggregate Jaccard Index (AJI) [2] and Panoptic Quality (PQ) [4]

Mask Generation

Bounding Box Localization Head  $\succ$  4-fold ensembling: merging multiple models trained on folds of the training set

> Test-time augmentation (TTA): using flips and color disturbances in the inference phase

> Transfer learning: using pretraining on the PanNuke Dataset

### ♦ Datasets used

> PanNuke dataset [3]: used for pre-training

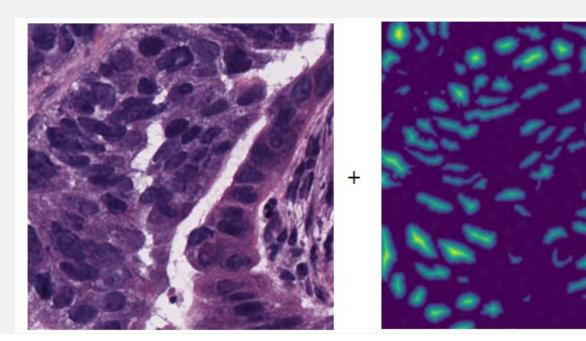
| S               | Kumar         | PanNuke        |
|-----------------|---------------|----------------|
| of Image tiles  | 30            | 7901           |
| ge Size         | 1000x1000     | 256x256        |
| of annotated    | 21,625        | 205,343        |
| lei             |               |                |
| of tissue types | 7             | 19             |
| otation type    | Manual binary | Semi-Automatic |
|                 |               | classified     |

### **♦** Evaluation Metrics

### Explored adaptation methods

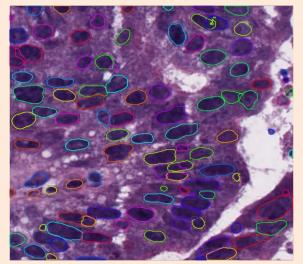
> Model adaptations: include distance map information as an extra input channel

> Example of 4-channel input (RGB image on the left + distance map derived from the binary masks on the right)

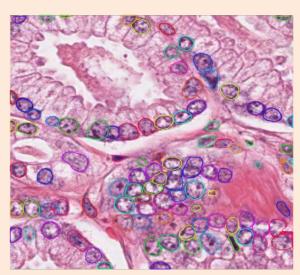


### Results

### $\diamond$ Visual evaluation of the test results from the best approach



Colon



Prostate

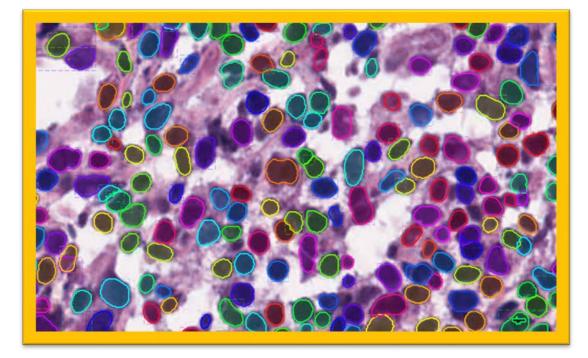
### **Conclusion and future work**

- segmentation on crowded nuclei
- beneficial

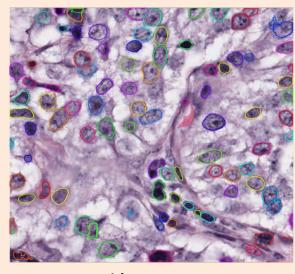
Acknowledgements

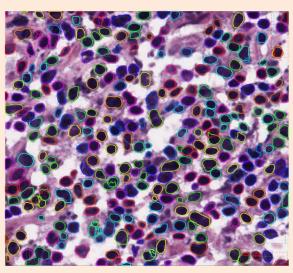
Funded by Austrian Research Promotion Agency (FFG), No. 872636

Contact Benjamin Bancher Mail: n01504423@students.meduniwien.ac.at



### **Quantitative average results on the Kumar et al.** (2017) test set





| Adaptation        | Ensemble     | TTA          | PanNuke<br>Pretrain | Distance<br>maps | AJI<br>(%) | P(<br>(% |
|-------------------|--------------|--------------|---------------------|------------------|------------|----------|
| Mask<br>R-CNN [5] | -            | -            | -                   | -                | 49.2       | 50       |
| Mask<br>R-CNN +   | $\checkmark$ | -            | -                   | -                | 52.2       | 52       |
|                   | -            | $\checkmark$ | -                   | -                | 53.5       | 53       |
|                   | -            | -            | $\checkmark$        | -                | 52.1       | 52       |
|                   | -            | -            | -                   | $\checkmark$     | 55.2       | 51       |
|                   | $\checkmark$ | $\checkmark$ | -                   | -                | 50.6       | 48       |
|                   | $\checkmark$ | -            | $\checkmark$        | -                | 53.3       | 52       |
|                   | $\checkmark$ | -            | -                   | $\checkmark$     | 55.9       | 52       |
|                   | -            | $\checkmark$ | -                   | $\checkmark$     | 55.6       | 52       |
|                   | -            | $\checkmark$ | $\checkmark$        | -                | 56.5       | 55       |
|                   | -            | -            | $\checkmark$        | $\checkmark$     | 56.2       | 52       |
|                   | $\checkmark$ | $\checkmark$ | $\checkmark$        | -                | 55.8       | 53       |
|                   | -            | $\checkmark$ | $\checkmark$        | $\checkmark$     | 56.2       | 52       |
|                   | $\checkmark$ | -            | $\checkmark$        | $\checkmark$     | 55.9       | 52       |
|                   | $\checkmark$ | $\checkmark$ | -                   | $\checkmark$     | 56.3       | 52       |
|                   | $\checkmark$ | $\checkmark$ | $\checkmark$        | $\checkmark$     | 56.7       | 53       |

> Mask R-CNN can perform high quality instance

> Adaptations to the baseline architecture improve the segmentation performance

> Not all combinations of modifications are

#### ♦ Next:

- Use customized inference strategy to minimize image border region detections
- > Explore alternatives and extensions to the RPN stage
- > Change model architecture to incorporate distance masks
- > Implement algorithm to merge instances

#### References

[1] He, et al., Mask R-CNN, Proceedings on the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988

[2] Kumar, et al., A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology, IEEE Transactions on Medical Imaging. 2017 Jul;36(7):1550-1560 [3] Gamper, et al., PanNuke Dataset Extension, Insights and Baselines, https://arxiv.org/abs/2003.10778

[4] Kirillov, et al., Panoptic Segmentation, Proceedings on the IEEE/CFV International Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9404-9413

[5] Reference implementation from: https://github.com/matterport/Mask\_RCNN

