

Multimodal morpho-molecular early stage bladder cancer assessment using endoscopic optical coherence tomography and Raman spectroscopy

Fabian Placzek^{*,1}, Eliana Cordero Bautista^{*,2}, Simon Kretschmer³, Lara M. Wurster¹, Florian Knorr², Gerardo González-Cerdas³, Mikael T. Erkkilä¹, Çağlar Ataman³, Gregers G. Hermann⁴, Karin Mogensen⁴, Thomas Hasselager⁵, Peter E. Andersen⁶, Hans Zappe³, Jürgen Popp^{2,7}, Wolfgang Drexler¹, Rainer A. Leitgeb¹, and Iwan W. Schie^{2,8}

¹Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria ²Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, Germany. ³Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany ⁴Department of Urology, Copenhagen University, Herlev/Gentofte hospital, Borgmester Ib Juuls Vej 23A, DK-2730 Herlev, Copenhagen, Denmark ⁵Department of Pathology, Copenhagen University, Herlev/Gentofte hospital, Borgmester Ib Juuls Vej 23A, DK-2730 Herlev, Copenhagen, Denmark ⁶Technical University of Denmark, Department of Health Technology (DTU HealthTech), Ørsteds Plads, Building 345C, DK-2800Kgs. Lyngby, Denmark ⁷Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany ⁸University of Applied Sciences-Jena, Department of Medical Engineering and Biotechnology, Carl-Zeiss-Promenade 2, 07745 Jena, Germany *These authors contributed equally to this work.

Motivation

Raman spectroscopy (RS) is a non-invasive imaging technique, providing label-free information on the molecular composition of investigated biological tissue.

Optical coherence tomography (OCT) is a noninvasive imaging technique, providing crosssectional images of biological tissues at a micrometer resolution up to 2 mm in depth.

- OCT gains importance in endoscopic applications such as bladder, esophagus, vessels^[1]
- RS extensively used for clinical tissue characterization^[2]
- forward-imaging probe: easier positioning of the probe in front of the targeted area^[3], e.g. in bladder

Accuracy	73.4	92	77
Sensitivity	78	95	81
Specificity	69	88	68
Confidence interval	(72.9-73.9)	(92.2-92.6)	(73-81)

Performance of OCT: texture analysis differentiating non-tumor from tumor (OCT), Performance of RS: model level 1 for tumor (T) & non-tumor (NT) / model level 2 for high grade (HG) and low grade (LG) ^[5]

Non-tumor Cancerou		us	Total		
69	(22)	50 (22)		116 (44)	
Stage		Grade			
CIS	рТа	pT1a	High	Low	
1 (1)	48 (22)	1 (1)	12 (6)	38 (19)	

Distribution of biopsies according to the stage and grade information. Histopathological label as gold standard for classification. Number in brackets indicate patient number. ^[5]

- Tumor grade by RS & Tumor stage by OCT
- Automated combined setup based on forward view OCT endoscope (3) and RS probe (2)
- White light camera for choosing region of interest (1)
- Automated classification of OCT data and RS data

Co-localized Raman and OCT

Heterogeneity of a pTa low grade labelled biopsy. Red arrows: loss of transition between the urothelium and the lamina propria. Blue arrows: regions of present lamina propria. OCT-RS combination: Model level 1 highlights tumor (red) and

Healthy bladder wall (OCT correlation to histopathological image). The green line indicates the mucosa/urothelium layer, the blue line shows the lamina propria and the red line is the muscularis layer. Scale bars: 250µm.^[5]

pTa low grade tumor (OCT correlation to histopathological image). The green line indicates the mucosa/urothelium layer, the blue line shows the lamina propria. Thickened urothelium due to tumor progression. Scale bars: 250µm.^[5]

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 721766 and MIB project No 667933.

non-tumor (black) areas and it is overlapped to the OCT image. The lamina propria appears bright in the OCT image and RS predicts the non-tumor tissue (black color within the stripes above the B-scans). Scale bars: 250µm.

- Co-localization of OCT and RS
- Apply combined endoscopic probe for in-vivo test (diameter: 4.4mm)
- Approval work for clearance of AGES (Austrian Agency for Health and Food Safety Ltd) using a non-CE-marked device for clinical trial

References

[1] M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, "Endoscopic optical coherence tomography: technologies and clinical applications [Invited], BOE 8(5), (2017).

[2] E. Cordero, I. Latka, C. Matthäus, I. W. Schie, and J. Popp, "In-vivo Raman spectroscopy: from basics to applications," J. Biomed. Opt. 23(7) 071210 (2018)

[3] X. Liu, M. J. Cobb, and Y. Chen, M. B. Kimmey, X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography", OL 29(15), (2004).

[4] G. W. Dy et al., "Global Burden of Urologic Cancers, 1990–2013," European Urology, vol. 71, no. 3, pp. 437–446, Mar. 2017. [5] F. Placzek, E. Cordero Bautista, S. Kretschmer, L. M. Wurster, et al., Analyst 145, 1445–1456 (2020).

Fabian.Placzek@meduniwien.ac.at