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Introduction
Magnetic Resonance Spectroscopic Imaging (MRSI) is an emerging 
medical imaging modality, which is steadily gaining popularity. It allows 
the acquisition of spectra, which encode the biochemical substances, for 
each voxel. Compared to other imaging techniques such as Magnetic 
Resonance Imaging (MRI) its acquisition time is relatively long. This 
makes its clinical application challenging. The typical approach to 
decrease the acquisition time is to omit k-space sampling points or 
trajectories. These are then later computationally reconstructed. In this 
paper a graph neural network is proposed for the reconstruction of 
undersampled concentric ring k-space data.

Data and Method
Non-water suppressed whole-brain MRSI data were collected from seven 
volunteers in ten random head positions. The data of the first six 
volunteers were used for training and the data of the last volunteer for 
validation.  Water-suppressed, long-TR FID-MRSI data were measured 
from all volunteers in the tenth position, and was used to evaluate the 
network. In each scan concentric ring trajectories were used, in total 16 
rings with 388 points per ring each are acquired. Graphs are defined by 
connecting point pairs with a distance less than 1.5 times the Nyqusit 
criterion. These rings are undersampled, by fully sampling the inner 6 
and then skipping every second of the outer rings.
The proposed complex Graph Neural Network (GNN) consists of two 
graph convolutional layers with a tanh activation function in between. A 
novel graph convolutional layer is introduced. For this purpose indicator 
functions are applied

The resulting weighting function is then defined as

where       are learnable parameters. Following the framework by Monti 
et al[3] the patch operator is defined as

where

The feature vectors are merged with a complex fully-connected layer. A 
linear layer with complex weights, following complex addition and 
multiplication rules.

Evaluation & Results
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Discussion
A novel deep learning based method for the reconstruction of 
undersampled non-Cartesian MRSI data is presented. The introduced 
model is compared against a state-of-the-art GRAPPA reconstruction 
algorithm and results in similar reconstructions. Overall, the results 
suggest that a deep learning based reconstruction is promising, but 
further research should be done.

The metabolic maps of tCho to tCr and tNAA to tCr, computed by 
LCModel [2], are shown in figure 2. Here the estimated relative 
amplitude of each voxel is shown, if its CRLB is lower than 40%. 
Although the average CRLBs of our method and GRAPPA [1] do not 
differ dramatically, it can be seen that a our methods leads to a more 
stable reconstruction of these metabolite maps. The reconstruction of 
our method still leads to ring-like artifacts in the relative amplitude 
maps, but compared to GRAPPA, is less noisy. SNR and 
Full-Width-half-Maxima maps are shown in figure 3. Here our method 
leads to a slight decrease in SNR, compared to GRAPPA. The average 
SNR of the volume is 7.72 and 8.81 (Table 1) for our method and 
GRAPPA. As before, the same ring-like artifact can be observed. The 
SNR decreases along the edges of the ring.

Table 1: The table shows the evaluation results for our method and GRAPPA comparing them to the Ground Truth 
(GT) based on fully sampled data. For the assessment several metrics are presented including SNR, FWHM and 
CRLBs.

Figure 2: The figure shows the evaluation results for our method and GRAPPA comparing them to 
the Ground Truth (GT) based on fully sampled data. For the assessment CRLBs of the maps for the 
metabolite groups tCr, tCho and tNAA.

Figure 1: Overview of the method. Data is acquired, undersampled and defined as graph (top left: 
Neighborhoods of vertices are shown in color). The pre-processed data is reconstructed by ours 
and GRAPA. Post-processing includes Fourier transformation in all spatial and time dimension and 
LCModel fitting. The output is a volume of the brain, where each voxel represents a spectrum.

Figure 3: The figure shows the evaluation results for our method and GRAPPA comparing them to 
the Ground Truth (GT) based on fully sampled data. For the assessment SNR and FWHM maps are 
presented.


