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Abstract

Background 
and Aims

Neutrophil extracellular traps (NETs) trigger atherothrombosis during acute myocardial infarction (AMI), but mechanisms 
of induction remain unclear. Levels of extracellular vesicles (EV) carrying oxidation-specific epitopes (OSE), which are tar-
geted by specific natural immunoglobulin M (IgM), are increased at the culprit site in AMI. This study investigated EV as in-
ducers of NETosis and assessed the inhibitory effect of natural anti-OSE–IgM in this process.

Methods Blood from the culprit and peripheral site of ST-segment elevation myocardial infarction (STEMI) patients (n = 28) was col-
lected, and myocardial function assessed by cardiac magnetic resonance imaging (cMRI) 4 ± 2 days and 195 ± 15 days post- 
AMI. Extracellular vesicles were isolated from patient plasma and cell culture supernatants for neutrophil stimulation in vitro 
and in vivo, in the presence of a malondialdehyde (MDA)-specific IgM or an isotype control. NETosis and neutrophil functions 
were assessed via enzyme-linked immunosorbent assay and fluorescence microscopy. Pharmacological inhibitors were used 
to map signalling pathways. Neutrophil extracellular trap markers and anti-OSE–IgM were measured by ELISA.
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Results CD45+ MDA+ EV and NET markers were elevated at the culprit site. Extracellular vesicles induced neutrophil activation and 
NET formation via TLR4 and PAD4, and mice injected with EV showed increased NETosis. Malondialdehyde-specific IgM 
levels were inversely associated with citH3 in STEMI patient blood. An MDA-specific IgM inhibited EV-induced NET release 
in vitro and in vivo. CD45+ MDA+ EV concentrations inversely correlated with left ventricular ejection fraction post-AMI.

Conclusions Culprit site–derived EV induce NETosis, while MDA-specific natural IgM inhibit this effect, potentially impacting outcome 
after AMI.

Structured Graphical Abstract

What induces and modulates neutrophil extracellular traps (NET) formation during ST-elevation acute myocardial infarction (STEMI)? 

Culprit site-derived extracellular vesicles of STEMI patients triggered NET formation in vitro and in mice. Toll-like receptor 4 (TLR4) and 
PAD4 were identified as key mediators of culprit site-derived EV-induced NETosis. This effect was inhibited by natural IgM recognizing 
oxidation-specific epitopes. The level of extracellular vesicles carrying these epitopes was inversely associated with left ventricular
ejection fraction in STEMI. 

Extracellular vesicles and natural IgM are endogenous modulators of NETosis in AMI.

Key Question

Key Finding

Take Home Message

p38

PAD4

LV-EF reduced

LV-EF preserved

TLR4

TLR4

NET

Neutrophil

Neutrophil

MDA-speci�c IgM

EV MDA+ EV

Different subsets of extracellular vesicles (EV) are released at the culprit site of ST-segment elevation myocardial infarction (STEMI), and a high per-
centage of leukocyte-derived EV carry oxidation-specific epitopes (OSE) such as malondialdehyde (MDA) epitopes (red). Culprit site EV from STEMI 
patients (MI-EV) can activate neutrophils and trigger peptidyl-arginine deiminase 4 (PAD4)–dependent formation of neutrophil extracellular traps 
(NETs) via toll-like receptor 4 (TLR4) signalling. The presence of the MDA-specific IgM antibody LR04 reduces MI–EV-induced NETosis. ST-segment 
elevation myocardial infarction patients with high levels of MDA-specific IgM, which have the capacity to balance activity of pro-inflammatory 
NETogenic EV, present with preserved left ventricular ejection fraction (LVEF).

Keywords Neutrophil extracellular traps • Natural IgM • Oxidation-specific epitopes • Extracellular vesicles • Acute myocardial 
infarction
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Introduction
Cardiovascular diseases (CVDs) remain the leading cause of death 
worldwide despite increasing efforts in prevention.1,2 Acute myocardial 
infarction (AMI) is a manifestation of atherosclerosis and is promoted 
by inflammation.3 Plaque rupture and erosion are the culprits of acute 
atherothrombosis. We have previously demonstrated an accumulation 
of neutrophils at the culprit site,4 which was predictive of long-term 
mortality after AMI.5 The functional role of neutrophils in AMI has 
been attributed to their ability to form neutrophil extracellular traps 
(NETs).6 Subsequently, NETs were implicated in plaque destabilization 
and increased vulnerability,7 but also in thrombosis.8 Thus, NETs are in-
volved in both chronic and acute stages of atherosclerotic CVD. These 
expulsed webs of chromatin interspersed with granule proteins and 
neutrophil proteases have the capacity to trap invading pathogens,9

but have also shown to effectively entangle platelets, erythrocytes, 
other immune cells, and coagulation factors.10,11 We have identified 
NETs as an integral part of coronary thrombi,10 and NET markers are 
specifically elevated in blood aspirated from the culprit site.10,12–14

In addition to coronary occlusion, we could associate NET burden 
with microvascular obstruction and decreased left ventricular ejection 
fraction (LVEF) after AMI.13 Reduction of NET formation in murine is-
chaemia–reperfusion models decreased myocardial damage suggesting 
promise for NETosis blockers as well as DNase treatment in AMI.15

Therefore, understanding mediators involved in induction and inhibition 
of NETosis in the context of atherothrombosis may become important 
for the treatment of AMI. The exact triggers of NETosis during AMI have 
been elusive.

Interestingly, extracellular vesicles (EV) have been suggested as po-
tential triggers of NETosis in different settings,16–18 but their involve-
ment in NET formation in AMI has not been studied. Extracellular 
vesicle is an umbrella term for phospholipid bilayer vesicles released 
by resting and activated cells. Although there is no clear consensus 
on EV terminology, EV can be divided into two major classes according 
to their biogenesis, either in the intracellular endosomal system or by 
budding from the outer cell membrane. Although larger EV (∼.1– 
1 µm), previously called microvesicles, seem to be predominantly 
released by blebbing from the cytoplasmic membrane, there is limited 
evidence that the mode of release shows clear size restrictions,19–22 as 
arrestin domain containing protein 1 (ARRDC1)–mediated budding has 
been described for smaller EV.23,24 Extracellular vesicles are loaded 
with different classes of biologically active molecules such as lipids, me-
tabolites, or regulatory RNAs; thus, their content may reflect the acti-
vation status of their parental cells,25 making them suitable as 
biomarkers.26–30 Functionally, they act as mediators of intercellular 
communication, and the properties of cells targeted by EV may be in-
fluenced by both uptake of their content and sensing of surface moi-
eties.31 Moreover, exposure of pro-coagulant phospholipids and 
tissue factor on EV harbours a direct pro-thrombotic potential.26,32–35

Thus, characterization of the biological activities of EV is crucial for the 
understanding of their role in atherosclerotic CVD.

The circulating levels of EV were found to be elevated in AMI,36,37

and we have identified a subset of EV that are recognized by immuno-
globulin M (IgM) antibodies with specificity for oxidation-specific epi-
topes (OSE).38 Oxidation-specific epitopes are adducts formed by 
the modification of different biomolecules with lipid peroxidation pro-
ducts and usually accumulate at sites of inflammation with increased 
generation of reactive oxygen species (ROS)39 such as atherosclerotic 
plaques. Oxidation-specific epitopes exhibit robust pro-inflammatory 
activities and represent a distinct class of danger-associated molecular 

patterns (DAMP),39–41 which are present on oxidized low-density lipo-
proteins (OxLDL), dying cells, and a subset of EV.38,42,43 OSE are gen-
erated in different pathologies associated with increased oxidative 
stress.44,45 Importantly, we found OSE+ EV to be increased at the cul-
prit site of coronary occlusion in AMI,38 though their functional role in 
this has not been addressed.

Different components of innate immunity recognize OSE and modu-
late their biological activities.39 Neutralization of specific OSE is pro-
tective in mouse models of atherosclerosis.46,47 For example, the 
pro-atherogenic role of OSE has been documented in a murine model 
of atherosclerosis by the beneficial effects of ectopic expression of the 
single-chain variable fragment of the natural IgM antibody E06 that binds 
and neutralizes oxidized phospholipids.47 Natural IgM are germline- 
encoded antibodies that represent important effectors of innate im-
munity,48 and we have previously found that a large part of natural 
IgM has specificity for OSE.48 Moreover, several OSE-specific IgM 
have been cloned, and their protective effects were demonstrated in 
vitro and in animal models of different pathologies.38,49,50

We and others have shown that circulating levels of OSE-specific 
natural IgM, including malondialdehyde (MDA)-specific IgM, are inverse-
ly associated with cardiovascular risk.51–53 The MDA-specific IgM anti-
body LR04 can inhibit pro-inflammatory and pro-coagulant effects of 
EV,38,50 which may provide a mechanistic explanation for these epi-
demiological observations. Importantly, we have recently demon-
strated that low titres of IgM antibodies recognizing a unique peptide 
mimotope of MDA, which was identified by peptide phage display using 
LR04, are associated with increased AMI incidence in the Pakistan Risk 
of Myocardial Infarction Study.54 Several protective mechanisms for 
MDA-specific IgM have been proposed with respect to plaque develop-
ment and progression, but the mechanism by which they mediate pro-
tection in the acute event has not been addressed. Considering the 
accumulating evidence on a key role for NETosis in AMI, we hypothe-
sized that OSE+ EV trigger NET formation during AMI and that binding 
of IgM to OSE+ EV inhibits this process. Therefore, we investigated the 
effect of culprit site EV on neutrophils, specifically examining NET for-
mation in vitro and in vivo and assessed the inhibitory role of 
OSE-specific natural IgM antibodies in this process.

Methods
All methodological procedures are described in detail in the Supplementary 
Data.

Patient study protocol (STATIM trial)
This patient population was a subset of the ‘Strategic targeted temperature 
management’ study (STATIM, NCT01777750).55 Patients were recruited at 
the time of diagnosis of ST-segment elevation myocardial infarction 
(STEMI). Inclusion criteria were anterior or inferior infarction with ST- 
segment elevations > .2 mV in two contiguous leads and a maximum dur-
ation of 6 h between symptom onset and presentation to emergency 
medical service. All patients received 250 mg of intravenous acetylsalicylic 
acid, oral prasugrel or ticagrelor, and intravenous unfractionated heparin 
to achieve an activated coagulation time > 300 s (4000–10 000 IE). Only pa-
tients who had originally been randomized to the control arm and had been 
eligible for coronary aspiration of thrombus material (n = 28) were included 
in the present investigation. Detailed study exclusion criteria, criteria for 
thrombectomy, and the processing protocols for blood samples are pro-
vided in the Supplementary Data. Myocardial function was assessed by car-
diac magnetic resonance imaging (cMRI) 4 ± 2 days (for simplification, a 
72-h time point is used) and 195 ± 15 days (for simplification, a 6-month 
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time point is used) after primary percutaneous coronary intervention 
(pPCI) as previously described.55

Healthy subjects for neutrophil isolation were recruited during routine 
healthcare check-ups, were above 18 years, and did not have documented 
CVD. The study protocols were approved by the Ethics Committee of the 
Medical University of Vienna (approval numbers 1497/2012 and 1947/ 
2014) and were carried out according to the Declaration of Helsinki and 
its amendments. All patients gave written informed consent.

Statistical analysis
Gaussian distribution was assessed by Shapiro–Wilk tests and histograms. 
Two independent groups were analysed with Student’s t-test or Mann– 
Whitney U test, while two paired groups were compared by paired t-tests 
or Wilcoxon matched-pairs signed-rank test. More than two groups were 
subjected to one-way analysis of variance (ANOVA). A mixed model was 
utilized to assess the effect of the sampling site and cellular origin on the 
presence of MDA on EV. In our model, EV subset, site, and the interaction 
between EV subset and site were treated as fixed effects. Subject, inter-
action between subject and EV subset, and interaction between subject 
and site were considered random effects. Subset and site were matched be-
tween patients. Tukey’s multiple comparisons test was applied to adjust the 
P-values. The specific tests that were used are stated in the respective figure 
legends; data were only transformed for statistical comparison if specifically 
stated in the figure legend, even if data are plotted on a log scale for pres-
entation. To test the predictive value of EV levels for reduced LVEF (<40%), 
the area under the receiver operating characteristic (ROC) curve was cal-
culated. The confidence intervals were calculated using the method by 
Wilson/Brown. A P-value of <.05 was considered statistically significant. 
Statistical analysis was done with IBM SPSS version 29 and Graph Pad 
Prism version 9.5.1.

Results
Extracellular vesicles at the culprit site
In order to investigate a potential link between NET formation and 
OSE–IgM in STEMI, we measured levels of natural IgM antibodies rec-
ognizing MDA epitopes in plasma of STEMI patients, in whom we had 
correlated outcome with NET surrogate markers.13 We selected pa-
tients undergoing pPCI subsequent to thrombus aspiration from the 
culprit site (n = 28). Patients were predominantly male and relatively 
young, with an average age of 55 ± 10 years, and a typical cardiovascular 
risk factor profile (see Supplementary data online, Table S1).

Levels of MDA-specific IgM correlated inversely with the degree of 
NET formation as measured by concentrations of citH3 in plasma. 
This effect was observed in peripheral blood (rs = −.535, 
P = .005, n = 27, Figure 1A) and in coronary blood (rs = −.393, 
P = .043, n = 27, Figure 1B). In general, neutrophil activation and NET 
surrogate markers were significantly higher at the culprit site as com-
pared to the peripheral site (see Supplementary data online, 
Figure S1). Based on these observations, we hypothesized that 
MDA-specific IgM might interfere with NET formation in STEMI.

Given that a significant portion of circulating EV carry MDA epi-
topes,38 we hypothesized that this subset of EV could be a potential 
trigger of neutrophil activation and NET formation in STEMI. 
Extracellular vesicles were isolated from culprit site plasma (MI–EV) 
of STEMI patients and thoroughly characterized. Nanoparticle tracking 
analysis revealed the presence of smaller and larger EV with an average 
diameter of 150 nm (see Supplementary data online, Figure S2A). Flow 
cytometry demonstrated that MDA+ EV represented a subset with a 
bigger diameter carrying phosphatidylserine, thereby allowing classifica-
tion as larger EV (see Supplementary data online, Figure S2B). 

Furthermore, isolated MI–EV and corresponding plasma samples 
were analysed by mass spectrometry, confirming different protein con-
tents through principal component analysis (see Supplementary data 
online, Figure S3A). Compared with plasma, EV preparations were en-
riched in proteins typically listed in VesiclePedia56,57 (see 
Supplementary data online, Figure S3B and Table S2). Analysis of minimal 
information for studies of EV (MISEV) category 1 proteins (transmem-
brane or GPI-anchored proteins associated with plasma membrane 
and/or endosomes;19 Supplementary data online, Figure S3C and D) 
and MISEV category 2 proteins (cytosolic proteins;19 Supplementary 
data online, Figure S3E) revealed significant enrichment of these EV hall-
mark proteins in isolated MI–EV compared with plasma. Although cer-
tain lipoproteins were present after differential centrifugation (see 
Supplementary data online, Figure S3F), they constituted a smaller pro-
portion of the total protein content in the EV preparation compared to 
the parental plasma (see Supplementary data online, Table S3).

Considering that MDA+ EV constituted a larger diameter subset, we 
measured the concentrations and frequencies of larger (.24–1.1 µm) 
MDA+ EV derived from endothelial cells (CD144+), platelets 
(CD41a+), and leukocytes (CD45+) at the culprit site and in peripheral 
arterial blood. As expected, concentrations of larger EV and MDA+ EV 
were significantly higher at the culprit site as compared to the arterial 
peripheral circulation (see Supplementary data online, Figure S4A and B).

Larger CD45+ and CD45+ MDA+ EV exhibited the highest quanti-
tative difference between peripheral and culprit sites (Figure 1C and D). 
Importantly, also the frequency of this CD45+ MDA+ subset was in-
creased at the culprit site, suggesting a site-specific enrichment of 
MDA-carrying leukocyte-derived EV (Figure 1E). The concentration 
of CD41a+ EV was significantly higher at the culprit site than in the per-
iphery (see Supplementary data online, Figure S4C), while those of 
CD144+ EV were the same at the culprit and peripheral sites (see 
Supplementary data online, Figure S4E), as were the concentrations 
of CD41a+ MDA+ and CD144+ MDA+ EV (see Supplementary data 
online, Figure S4D and F). The frequency of MDA+ EV derived from leu-
kocytes (CD45+) was significantly higher than of the other two EV sub-
sets at the culprit site (Figure 1F), while there was no difference at the 
peripheral site. These data indicated local leukocyte activation and in-
creased release of leukocyte EV at the site of coronary occlusion. 
Levels of EV (rs = .488, P = .010, n = 27), CD45+ EV (rs = .468, 
P = .014, n = 27), and CD45+ MDA+ EV (rs = .402, P = .038, n = 27) 
correlated with culprit site neutrophil elastase (NE) levels, but not 
with other NET surrogate markers (see Supplementary data online, 
Table S4).

Myocardial infarction–extracellular 
vesicles from the culprit site induce 
NETosis
Next, we tested the effect of EV on neutrophil-like differentiated HL60 
(dHL60) cells (see Supplementary data online, Figure S5A and B). Culprit 
site MI–EV induced a prominent release of typical NET structures of 
chromatin interspersed with MPO. Notably, EV derived from the per-
ipheral venous circulation 72 h after intervention also induced NETosis, 
but this was less accentuated (see Supplementary data online, 
Figure S5C), indicating a declining pro-inflammatory activity in the recov-
ery phase of STEMI. This observation is in accordance with 
decreasing concentrations of MDA+ EV (see Supplementary data 
online, Figure S5D–F), leukocyte counts (see Supplementary data 
online, Figure S6A and B), and NET levels (see Supplementary 
data online, Figure S6D–F).
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Since CD45+ EV were the subset with the highest frequency 
of MDA epitopes at the culprit site as compared to the 
peripheral circulation (Figure 1F), we specifically tested the stimulatory 

capacity of leukocyte-derived EV on primary human neutrophils. 
Therefore, we generated EV in vitro by activating THP-1 monocytic 
cells with lipopolysaccharide (LPS) as previously described.58

Figure 1 Concentration and percentage of CD45+ extracellular vesicles carrying malondialdehyde epitopes are elevated at the culprit site. 
Citrullinated histone H3 (citH3), malondialdehyde-specific immunoglobulin M, and extracellular vesicles were measured in culprit site and peripheral 
site plasma of acute myocardial infarction patients. Annexin V positivity and a size range of .2–1.1 µm were used to define large extracellular vesicles. 
Anti-CD45 and malondialdehyde-specific LR04 antibodies were used to define leukocyte origin and MDA+ extracellular vesicles. (A) Correlation of 
plasma levels of citH3 with malondialdehyde-specific immunoglobulin M in the periphery and (B) at the culprit sites; Spearman signed-rank correlations. 
Comparison between the periphery and culprit site of (C ) annexin V–positive CD45+ events/µL, (D) Annexin V–positive CD45+ malondialdehyde- 
positive events/µL, and (E) percentage of malondialdehyde-positive extracellular vesicles gated from annexin V–positive CD45+ events; Wilcoxon 
matched-pairs signed-rank tests. (F ) Percentages of malondialdehyde-carrying extracellular vesicles derived from leukocytes (CD45+), platelets 
(CD41a+), and endothelial cells (CD144+) were compared at the culprit site and in the periphery using a mixed model *P < .05, **P < .01, 
*** P < .001, ****P < .0001. Light-shaded dots represent female patients. RLU, relative light units
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Lipopolysaccharide-stressed cells released a higher number of EV enriched 
in EV-carrying MDA epitopes (see Supplementary data online, Figure S7).

These EV robustly activated primary human neutrophils shown by a 
distinct release of the NET marker deoxyribonucleic acid (DNA)–mye-
loperoxidase (MPO) complexes (Figure 2A; Supplementary data online, 
Figure S8A) and NE (Figure 2B) into the supernatant. Extracellular vesi-
cles could also trigger a pronounced release of interleukin-8 (IL-8; 
Figure 2C; Supplementary data online, Figure S8B) after 3 h, and de-
granulation of azurophilic (MPO, Figure 2D; Supplementary data 
online, Figure S8C) and specific granules [neutrophil gelatinase–asso-
ciated lipocalin (NGAL), Figure 2E; Supplementary data online, 
Figure S8D] after 30 min, but did not increase the production of ROS 
(Figure 2F; Supplementary data online, Figure S8E and F).

Finally, we confirmed that MI–EV also have the ability to 
induce NET formation of primary human neutrophils by visualizing 
formed NETs in fluorescence microscopy (Figure 2G and H). Taken 
together, EV can trigger NET formation and other major functions 
of neutrophils.

Extracellular vesicle–induced NETosis is 
dependent on TLR4 and PAD4
We used a pharmacological approach to pinpoint the role of two major 
signalling axes, i.e. PAD4-dependent and PAD4-independent NET for-
mation in EV-induced NETosis by inhibiting TLR4, PAD4, p38 mitogen 
activated kinase, protein kinase C (PKC), MEK, and NADPH oxidase. 
Inhibition of TLR4, PAD4, and p38 significantly inhibited EV-induced 
NETosis as measured by release of DNA–MPO complexes 
(Figure 3A–C), while PKC, MEK, and NADPH oxidase inhibitors only re-
duced NET formation by PMA or had no effect (Figure 3D–G). TLR4 
and PAD4 were confirmed as key mediators for NETosis using MI– 
EV and primary neutrophils as assessed by fluorescence microscopy 
(Figure 3H–K). Notably, the effect of all tested inhibitors was not uni-
form across other neutrophil effector functions induced by EV, as, 
for example, neither inhibition of TLR4 nor PKC or MEK influenced 
the release of IL-8 (see Supplementary data online, Figure S9A–F), 
MPO (see Supplementary data online, Figure S10A–F), or NGAL 
(see Supplementary data online, Figure S11A–F). Thus, extracellular 
vesicle–induced effects on neutrophils exhibited a distinct signalling 
pattern compared to ‘classical’ stimuli (see Supplementary data 
online, Figure S8).

LR04 inhibits NETosis induced by 
extracellular vesicles from acute 
myocardial infarction patients in vitro
To test the ability of the MDA-specific IgM LR04 to interfere with 
EV-induced NETosis, primary human neutrophils were stimulated 
with EV in the presence of LR04. LR04, but not an isotype control, sig-
nificantly attenuated the release of DNA–MPO complexes from pri-
mary neutrophils (Figure 4A).

Similarly, release of NETs by primary neutrophils and neutrophil- 
like dHL60 cells stimulated with MI–EV was also inhibited by 
LR04 as assessed by microscopy (Figure 4B and C; Supplementary 
data online, Figure S12A and C, correspondingly). To rule out 
EV-independent effects of LR04 leading to an unspecific decrease in 
NET formation, we also stimulated neutrophil-like dHL60 cells with 
IL-8, a well-established, pathophysiological NET trigger.59 While 
IL-8 induced NETs, neither isotype control IgM nor LR04 significantly 
reduced NETosis (see Supplementary data online, Figure S12B and D).

LR04 inhibits NETosis induced by 
extracellular vesicles from acute 
myocardial infarction patients in mice 
in vivo
To validate our findings in vivo, we tested the NET-inducing potential of 
MI–EV in a mouse model. Given the conserved nature of OSE in ver-
tebrates,39 as well as the conserved binding by pattern recognition re-
ceptors, we studied the ability of human MI–EV to activate circulating 
neutrophils in mice. Mice were injected with MI–EV from human cul-
prit site plasma and sacrificed after 3 h to study systemic neutrophil ac-
tivation in the blood (Figure 5A). The percentage of neutrophils positive 
for citH3 was significantly higher in blood of mice injected with MI–EV 
compared to sham-injected animals (Figure 5B–D). Moreover, the rela-
tive area of ex vivo–formed NETs detected by immunofluorescence 
(IF) microscopy (Figure 5B and C) was significantly larger in blood 
of mice injected with MI–EV compared to sham-injected animals 
(Figure 5E).

Importantly, the number of circulating EV was not significantly influ-
enced following injection, indicating that exogenous EV did not substan-
tially alter the steady-state levels of EV in the circulation (see 
Supplementary data online, Figure S13A) but rather increased the pro-
portion of EV with a high potential to induce NETosis. While circulating 
cell-free double-stranded DNA (dsDNA) was significantly increased in 
mice receiving MI–EV compared to sham-treated animals (see 
Supplementary data online, Figure S13C), citH3 remained unchanged 
(see Supplementary data online, Figure S13B). Altogether, these data in-
dicate that MI–EV can induce NETosis in mice in vivo.

Levels of MDA-specific IgM have been shown to decline in acute 
settings in humans, suggesting increased consumption of these 
antibodies.60 In order to test the hypothesis that binding of 
MDA-specific IgM to exogenously administered EV can reduce anti-
body levels in the circulation, plasma IgM concentrations were com-
pared before and after injections.

After 3 h, circulating levels of total IgM were significantly decreased in 
MI–EV-injected mice (see Supplementary data online, Figure S13D) con-
sistent with the fact that a large part of natural IgM has specificity for 
MDA epitopes. To attribute this decline to specific consumption of 
OSE–IgM, MDA-specific IgM was normalized to total IgM. Even after 
normalization, MDA-specific IgM levels were significantly lower in 
MI–EV-injected mice than mice at baseline (see Supplementary data 
online, Figure S13E) indicating a specific consumption of these 
antibodies.

Based on this finding and on our in vitro results, we aimed to confirm 
the potential inhibitory effect of MDA-specific IgM LR04 on EV-induced 
neutrophil activation in vivo. Mice were co-injected with MI–EV and ei-
ther an isotype control or LR04. Antibody administration did not signifi-
cantly increase the levels of total IgM in both groups (see 
Supplementary data online, Figure S14A). Importantly, IgM reactivity 
with a peptide mimotope (P2) specifically recognized by LR0454,61

was robustly increased in plasma of animals injected with LR04 but 
not with isotype control (see Supplementary data online, 
Figure S14B). Thus, administration of LR04 was responsible for the in-
crease of P2 mimotope-reactive IgM. Moreover, co-injection of MI– 
EV and antibodies did not affect haematocrit and differential blood 
counts (see Supplementary data online, Figure S15A–F).

Co-injection of LR04 with MI–EV resulted in reduced neutrophil 
activation in vivo as documented by a considerably lower NET area 
in IF microscopy of cytospins of peripheral blood and a marginally 
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Figure 2 Extracellular vesicles induce neutrophil activation and neutrophil extracellular trap formation. (A–F) Neutrophils of healthy donors were 
stimulated either with extracellular vesicles or vehicle control, and supernatants were screened for the release of (A) deoxyribonucleic acid–myeloper-
oxidase complexes as neutrophil extracellular trap surrogate markers after 3 h, (B) neutrophil elastase after 3 h, (C ) interleukin-8 after 3 h, (D) degranu-
lation of myeloperoxidase after 30 min, (E) degranulation of neutrophil gelatinase–associated lipocalin after 30 min, and (F ) reactive oxygen species 
production after 15 min. (G and H ) Neutrophils of healthy donors were stimulated with myocardial infarction–extracellular vesicles, and formed neu-
trophil extracellular traps were stained with anti-deoxyribonucleic acid–histone (yellow) and anti-myeloperoxidase (red) antibodies. DAPI staining 
(blue) was used to visualize DNA/cell nuclei. (G) Representative pictures of neutrophil extracellular traps formed upon stimulation with vehicle 
(top) and culprit site myocardial infarction–extracellular vesicles (bottom), which were (H ) quantified by normalizing the merged area to total DAPI 
area; paired t-tests, (E) data were log-transformed before statistical comparison, *P < .05, **P < .01, ***P < .001, ****P < .0001. MPO, myeloperox-
idase; NE, neutrophil elastase; NGAL, neutrophil gelatinase–associated lipocalin; ROS, reactive oxygen species
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Figure 3 Extracellular vesicle–induced neutrophil extracellular trap formation is dependent on TLR4, p38, and PAD4. Neutrophils of healthy donors 
were pre-treated with inhibitors of (A) TLR4 (TAK-242, 10 µM), (B) PAD4 (GSK484, 10 µM), (C ) p38 (SB203580, 10 µM), (D) PKC (Go6979, 2 µM), 
(E) MEK (PD98059, 40 µM), and (F ) NADPH oxidase (diphenyleniodonium chloride, 20 µM) or vehicle control for 20 min before stimulation with 
extracellular vesicles, PMA (125 nM), and ionomycin (4 µM) for 3 h to assess neutrophil extracellular trap formation by deoxyribonucleic acid– 
myeloperoxidase complexes; (G) matrix summarizing A–F, Wilcoxon matched-pairs signed-rank tests. (H–J ) The involvement of TLR4 and PAD4 
was confirmed using coronary myocardial infarction–extracellular vesicles on primary neutrophils. (H ) Neutrophil extracellular traps were visualized 
by immunofluorescence microscopy and were defined as merge of chromatin and myeloperoxidase. Neutrophil extracellular trap area was normalized 
to DAPI area and presented as fold to the respective vehicle control for (I ) TLR4 inhibition and (J ) PAD4 inhibition; paired t-tests. (K ) Potential signalling 
pathway of extracellular vesicle–induced neutrophil extracellular trap formation. *P < .05, **P < .01
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reduced percentage of citH3+ neutrophils (Figure 5F–I). Plasma citH3 
levels were significantly lower in LR04-injected mice compared to iso-
type control-injected mice (see Supplementary data online, Figure S14C), 
while dsDNA levels were not different (see Supplementary data online, 
Figure S14D).

Because the monoclonal antibody LR04 represents a naturally occur-
ring IgM antibody, we tested the hypothesis that pre-injection levels of 
endogenous IgM recognizing the P2 peptide mimotope may be asso-
ciated with reduced EV-induced NETosis. Indeed, we observed an in-
verse association of endogenous P2-reactive IgM levels and the 
percentage of citH3+ neutrophils in mice co-injected with MI–EV and 
an isotype control IgM antibody (r = −.743, P = .014, n = 10; 
Supplementary data online, Figure S14E). In contrast, this was not ob-
served in mice receiving MI–EV and LR04 due to the significant increase 
of exogenously added MDA-specific IgM (r = −.370, P = .292, n = 10; 
Supplementary data online, Figure S14F). These data demonstrate 
that higher levels of endogenous MDA-specific IgM have the capacity 
to reduce EV-induced NETosis in vivo.

Leukocyte-derived 
malondialdehyde-positive extracellular 
vesicles predict reduced left ventricular 
ejection fraction
Finally, we analysed whether the levels of deleterious EV in the acute set-
ting of STEMI may mark the extent of tissue damage and the future out-
come of cardiac function. Therefore, we correlated cMRI-derived LVEF 
72 h and 6 months after STEMI (follow-up) with EV subsets. 
Concentrations of MDA+ EV measured at the culprit site were strongly 
and inversely associated with LVEF at 72 h (rs = −.505, P = .006, n = 28, 
Figure 6A) and follow-up (rs = −.427, P = .033, n = 25; Supplementary 
data online, Figure S16A). This effect was specific to MDA+ EV as no as-
sociation was found with levels of Annexin V (AnV)+ EV.

Concentrations of CD45+ MDA+ EV showed a strong negative as-
sociation with LVEF at 72 h (rs = −.489, P = .008, n = 28, Figure 6B) 
and follow-up (rs = −.442, P = .027, n = 25; Supplementary data 
online, Figure S16B), highlighting the impact of leukocyte-driven 

Figure 4 Malondialdehyde-specific immunoglobulin M LR04 attenuate extracellular vesicle–induced neutrophil extracellular trap formation. 
(A) Neutrophils isolated from healthy donors were stimulated with extracellular vesicles released by lipopolysaccharide-activated THP-1 monocytic 
cells, either in the presence of malondialdehyde-specific immunoglobulin M LR04 or isotype control (25 µg/mL and 12.5 µg/mL). Deoxyribonucleic 
acid–myeloperoxidase complexes in the supernatant were measured as indicator of neutrophil extracellular trap formation. Repeated measures ana-
lysis of variance. (B and C ) Neutrophils isolated from healthy donors were stimulated with myocardial infarction–extracellular vesicles pooled from 
culprit site plasma of six patients, either in the presence of LR04 or an isotype control (25 µg/mL). Neutrophil extracellular traps were visualized 
by immunofluorescence microscopy and were defined as merge of chromatin and myeloperoxidase. Neutrophil extracellular trap area was normalized 
to DAPI area and presented as fold of the respective vehicle control; repeated measures analysis of variance. *P < .05
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inflammation on patient outcome. In contrast, neither the levels of 
AnV+ MDA (see Supplementary data online, Figure S17A) nor 
CD45+ MDA+ EV (see Supplementary data online, Figure S17B) in 
the peripheral circulation displayed an association. To test the predict-
ive value of larger CD45+ MDA+ EV levels, we conducted ROC analysis 
stratifying patients based on LVEF into a group with LVEF > 40% (IQR 
49%–60%) and a group with LVEF < 40% (IQR 31%–38%). We identi-
fied the levels of culprit site but not peripheral CD45+ MDA+ EV as 
strong predictors of reduced LVEF 72 h after STEMI (A = .789, P  
= .001, Figure 6C). To integrate the potential beneficial effect of 
MDA-specific IgM, we calculated the ratio between CD45+ MDA+ EV 

and IgM for each patient. This individual ratio displayed an even stronger 
negative association with LVEF at 72 h (Figure 6D) and follow-up (see 
Supplementary data online, Figure S16C). These data emphasize the im-
portance of the local balance of pro- (EV) and anti-NETogenic (IgM) 
factors at the culprit site.

Discussion
Neutrophils are significantly elevated during AMI, particularly at the cul-
prit site.5,6,62 They are considered important drivers of immunothrom-
bosis in CVD10,11,13 especially due to their ability to form NETs. 

Figure 5 Malondialdehyde-specific immunoglobulin M LR04 attenuates myocardial infarction–extracellular vesicle–induced neutrophil extracellular 
trap formation in vivo. (A) Mouse treatment protocol. Baseline blood was drawn to determine malondialdehyde-specific immunoglobulin M levels 4 days 
prior to any injections. Upon sacrifice 3 h after injections, cytospins of haemolysed whole blood were prepared and analysed by immunofluorescence 
microscopy. (B and C ) Representative pictures of cytospins of a mouse injected with (B) vehicle or (C ) myocardial infarction–extracellular vesicles, 
respectively. (D and H ) Ly6G+ (green) nuclei were identified, and the percentage of citH3+ (yellow) neutrophils was quantified. (E and I ) An overlay 
of DNA and citH3 was quantified as NETs. (F and G) Representative cytospin pictures of a mouse treated with (F ) myocardial infarction–extracellular 
vesicles and isotype or (G) myocardial infarction–extracellular vesicles and LR04. Red arrows indicate NETs, white arrows citH3+ neutrophils. Mann– 
Whitney U test in (D, E, and H ), unpaired t-test in (I ); * P < .05.
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We and others have described endogenous triggers of NETosis, such as 
monocyte chemo-attractant protein 1,12 IL-1β,63 activated platelets,64

and OxLDL.65 Here, we report that EV isolated from STEMI patients 
have the capacity to activate neutrophils in vitro and in vivo. An abun-
dance of EV in acute CVD renders them potent sterile triggers of 
NET formation. The observation that culprit site MI–EV could enhance 
the NETing of circulating neutrophils in mice, which typically have low 
neutrophil numbers,66 underscores the robust NETogenic potential of 
these EV. Furthermore, we identified the TLR4–PAD4 axis as key sig-
nalling pathway in MI-EV-induced NETosis. Notably, pharmacological 
inhibitor studies revealed differences between EV-induced NETosis 
compared to NETosis induced by ‘classical’ triggers, such as PMA or io-
nomycin. This points to a distinct signal transduction triggered by EV 
and emphasizes the limitations of the use of ‘artificial’ NET inducers 
to study pathophysiological processes.

Extracellular vesicles are recognized for their functional effects and 
biomarker potential in chronic and acute settings of CVD. For example, 
EV can induce expression of tissue factor, cytokines, and adhesion mo-
lecules in vascular cells promoting a pro-coagulatory phenotype and 
thereby thrombosis. In addition, EV-associated phospholipids also dir-
ectly contribute to thrombus formation.67 We now show that EV 
have the capacity to trigger NETosis and other functions of neutrophils 
relevant to CVD, such as release of IL-8, NE, and MPO. Interestingly, 
these effector mechanisms seem to be differently regulated as they 

did not follow the same inhibitory pattern observed for EV-induced 
NETosis. The lack of correlation between EV subsets and certain 
NET surrogate markers in patient samples suggests a complex interplay 
that warrants further investigation. Their association with NE plasma 
levels likely indicates a prodromal phase of general neutrophil activa-
tion, increasing the NETing capacity. Moreover, due to degradation 
of NET chromatin filaments by circulating deoxyribonucleases,10 NE 
plasma levels might better capture the ongoing cycle of neutrophil ac-
tivation, of which NETs are only a part.

Extracellular vesicles have been proposed to play both beneficial and 
deleterious roles in AMI,68 and the identification of EV subsets with 
different biological activities is important. Despite the robust 
pro-inflammatory and pro-thrombotic potential of EV, their local con-
tribution at the site of coronary occlusion is still inadequately investi-
gated. Here, we show that leukocyte-derived EV contained the 
highest percentage of MDA+ EV at the culprit site when compared 
to platelet- and endothelial-derived EV. This is consistent with the 
high potential of ROS production by activated leukocytes, suggesting 
that MDA+ EV may be shed in the process of NET formation, thus pro-
viding a positive feedback loop for more NETosis. Consistently, THP-1 
cells stimulated with LPS in vitro shed more EV, with a significantly high-
er proportion of MDA+ EV compared with resting cells. The gener-
ation of OSE does not only reflect increased oxidative stress, 
but OSE also have the capacity to induce inflammatory responses.39,69

Figure 6 Association of 72-h left ventricular ejection fraction with malondialdehyde-positive extracellular vesicles. Spearman signed-rank correlations of 
cardiac magnetic resonance imaging–derived left ventricular ejection fraction (%) at 72 h with culprit site (A) malondialdehyde-positive extracellular vesicles 
and (B) CD45+ malondialdehyde-positive extracellular vesicles. (C) Receiver operating characteristic analysis of CD45+ malondialdehyde-positive extra-
cellular vesicles from the culprit site (dots) and the periphery (empty circles) predicting reduced left ventricular ejection fraction (<40%). (D) Spearman 
signed-rank correlation of cardiac magnetic resonance imaging–derived left ventricular ejection fraction (%) at 72 h with the ratio of culprit site CD45+ 
malondialdehyde-positive extracellular vesicles and malondialdehyde–immunoglobulin M. Light-shaded dots represent female patients. A, area

Malondialdehyde-specific natural IgM inhibit NETosis                                                                                                                                          11
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/advance-article/doi/10.1093/eurheartj/ehae584/7742124 by Library M
edU

ni Vienna (90003681) user on 10 Septem
ber 2024



A recent study found that oxidized phospholipids induced NET forma-
tion in lymphocyte adapter protein (LNK)–deficient mice which is a 
model for NETosis.70

Oxidation-specific epitope–specific IgM antibodies represent a large 
part of naturally occurring IgM,48 and their plasma levels are inversely 
associated with cardiovascular events.54,71 A recent study highlighted 
that high levels of OSE-specific IgM, including IgM with specificity for 
a peptide mimotope of MDA that is specifically bound by LR04, are as-
sociated with reduced AMI risk. Thus, in our experimental studies, we 
investigated the effect of an IgM antibody with the exact same specificity 
as the endogenous IgM titres showing an inverse association with clin-
ical outcomes.54 The protective mechanisms of these IgM have been at-
tributed to their capacity to neutralize the pro-inflammatory activities 
of OxLDL and aid the clearance of dying cells. However, the potential 
effect of these IgM in the acute manifestation of atherosclerosis, i.e. 
AMI, has been unknown. In our study, we discovered an inverse correl-
ation between the levels of NET markers, such as citH3, and 
MDA-specific IgM in the circulation of AMI patients, suggesting that tar-
geting of MDA epitopes can reduce the deleterious potential of EV 
(Structured Graphical Abstract). Nevertheless, natural IgM may exert 
additional protective effects by targeting OSE on the surface of a range 
of molecules exposed at the culprit site.

The notable finding of a strong, negative correlation between 
leukocyte-derived MDA+ EV at the culprit site and LVEF measured 
by the gold standard method of cMRI underscores the invaluable in-
sights that can be gained from analysing local blood samples. While 
our stratification based on LVEF may have limited implications for clin-
ical diagnostics, it serves as a compelling testament to the importance of 
investigating the local milieu through in-depth analysis of culprit site 
blood, offering a perspective that goes beyond peripheral blood assess-
ments. Importantly, we have found that the ratio between levels of 
MDA+ EV inducing NETosis and MDA-specific IgM show an even 
more robust inverse association with LVEF 72 h after intervention 
and 6 months after AMI. These data support the notion that the balance 
of deleterious players in AMI, such as MDA+ EV, and protective factors, 
such as OSE–IgM, need to be considered. Despite the fact that we only 
show a robust association in culprit site samples with clinical outcomes, 
future studies in larger cohorts should investigate the potential of a 
combined assessment of these factors in peripheral blood samples. 
Furthermore, future research should address potential gender differ-
ences, which were not discernible in our study due to the predominant-
ly male study cohort.

In summary, EV from AMI patients are potent inducers of NETosis in 
vitro and in vivo triggering distinct intracellular signalling pathways in neu-
trophils. The demonstration that IgM targeting OSE on EV can modulate 
NET formation in vitro and in mice in vivo and the association of the ratio 
between CD45+ MDA+ EV and MDA-specific IgM with LVEF provide 
novel mechanistic insights into the protective effects of OSE–IgM in AMI.
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