Skip to main content Deutsch

Detail

Georg Widhalm
Assoc. Prof. Priv.-Doz. Dr. Georg Widhalm, PhD

Department of Neurosurgery
Position: Associate Professor

ORCID: 0000-0001-6014-0273
georg.widhalm@meduniwien.ac.at

Keywords

Artificial Intelligence; Brain tumor biomarkers; Digital Histopathology; Fluorescence; Intraoperative Neurophysiological Monitoring; Intraoperative Tumor Visualization; Neurooncology; Stimulated Raman Histology

Selected publications

  1. Wadiura, L.I. et al. (2022) ‘Toward digital histopathological assessment in surgery for central nervous system tumors using stimulated Raman histology’, Neurosurgical Focus, 53(6), p. E12. Available at: https://doi.org/10.3171/2022.9.focus22429.
  2. Hollon, T. et al. (2023) ‘Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging’, Nature Medicine, 29(4), pp. 828–832. Available at: https://doi.org/10.1038/s41591-023-02252-4.
  3. Widhalm, G. et al. (2020) ‘The value of visible 5-ALA fluorescence and quantitative protoporphyrin IX analysis for improved surgery of suspected low-grade gliomas’, Journal of Neurosurgery, 133(1), pp. 79–88. Available at: https://doi.org/10.3171/2019.1.jns182614.
  4. Widhalm, G. et al. (2010) ‘Value of 1H-magnetic resonance spectroscopy chemical shift imaging for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast-enhancement’, Journal of Neurology, Neurosurgery & Psychiatry, 82(5), pp. 512–520. Available at: https://doi.org/10.1136/jnnp.2010.205229.
  5. Widhalm, G. et al. (2010) ‘5‐Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement’, Cancer, 116(6), pp. 1545–1552. Available at: https://doi.org/10.1002/cncr.24903.