Christian Doppler Laboratory for Artificial Intelligence in Retina – “CD AIR”
The Lab is focused on solving socio-technical hurdles for the deployment of AI in eye care as clinical-decision support systems. This interdisciplinary research team is composed of retinal specialists, computer scientists and software engineers, developing innovative image analysis methods for precision medicine in retinal disease.
The overarching goal of the Laboratory is to enable AI-driven clinical decision support systems (CDSSs) for the effective management of retinal diseases, representing the leading causes of blindness. The CDSS would naturally be rooted in rich multi-modal imaging offered by OCT device manufacturers, but would also exploit the data available in the associated EHR. Such modern AI based CDSS in retina is expected to:
- automate tedious tasks and provide objective examination summaries,
- allow detecting pathological changes of retina early and precisely, and
- improve the clinical workflow efficiency allowing retinal specialists to examine more patients more accurately. This would constitute a groundbreaking raise of the level of healthcare quality in ophthalmology.
The research will advance our understanding of the most devastating blinding diseases. It will widely expand the spectrum of accessible biomarkers in the current diagnostic and therapeutic area going far beyond the previously known features and established paradigms, open the horizon for novel subclinical biomarker detection providing a novel understanding of disease mechanisms and identification of novel therapeutic targets.
Challenges ahead
With the enormous advance of AI over the past decade, nowadays capable of a human-level pattern recognition performance, uptake of deep learning models in clinical routine has nevertheless still not happened. This stems from following very unique challenges that machine learning technology is facing when being deployed in a medical setting.
- High-dimensional Data
Medical data is dense rather than big, the so called “large p, small n” problem. There is often a vast amount of multi-modal detail available about a patient while the number of available patients is limited. Such a setting poses a considerable challenge for an effective machine learning. - Data quality
Data is the fuel that powers AI, though much of real-world medical data is heterogeneous, noisy and incomplete or missing, acquired with different imaging devices and protocols. There is a large variability of expert opinions and ground truth labels are often not retrievable. Thus, machine learning methods have to handle data sparsity, and missing or incorrect values and labels. - The last mile problem, aka the final percent
In a safety-critical environment like medicine, any wrong conclusion could have a catastrophic downstream effect. Thus, it is important that AI demonstrate robustness, and is able to handle also rare, corner-case situations, which is often ignored in performance evaluations. Currently, a clinician in the loop is needed to assure the credibility of the output. - The distribution shift
It poses a fundamental limitation to machine learning abilities. As the imaging equipment changes, the models trained on retrospective data may not generalize to the newly acquired data anymore. Thus, algorithms that can withstand some extent of distribution shift are needed. - Supervision
Most of current deep learning is supervised with a significant cost and manual effort required to annotate often at the pixel-level the large amount of data needed for learning. In addition, in cases of a distribution shift, supervised learning requires extensive relabelling to regain its performance. Methodologies behind unsupervised, self-supervised and weakly-supervised approaches need to be better exploited. - Trustworthiness
AI models need to demonstrate generalizability, interpretability and reproducibility to gain trust. This places a high bar on capabilities AI needs to demonstrate. Currently, most deep learning models are essentially black-boxes, where clinicians have limited understanding of how a model comes to its decision. Further effort into providing evidence for predictions by a model is needed for clinicians to properly weigh its output. - Deployment
Use of AI in the clinic requires additional validation from socio-technical and clinical user experience aspects, to make sure the technology supports and not hinders the clinical workflows.
Despite the above challenges, we are in an exciting era at the interface of AI and retinal imaging, with ample opportunities to innovate and improve the current state of the art. This would allow to leverage the power and enourmous potential of deep learning to make a real impact in ophthalmology by further boosting retinal image analysis capabilities and enabling AI tools to find their way into the market and into the hands of the clinicians world-wide.
Research Group
Publications
Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT
Lachinov D, Seeböck P, Mai J, Goldbach F, Schmidt-Erfurth U, Bogunovic H
2021 Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
Preprint link
Deep Dirichlet uncertainty for unsupervised out-of-distribution detection of eye fundus photographs in glaucoma screening
Araujo T, Aresta G, and Bogunovic H
2022 Proc. IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), pp. 1-5
Preprint link
ADAM Challenge: Detecting Age-related Macular Degeneration from Fundus Images
Fang H, Li F, Fu H, Sun X, Cao X, Lin F, Son J, Kim S, Quellec G, Matta S, Shankaranarayana S, Chen Y-T, Wang C-H, Shah NA, Lee C-Y, Hsu C-C, Xie H, Lei B, Baid U, Innani S, Dang K, Shi W, Kamble R, Singhal N, Wang C-W, Lo S-C, Orlando JI, Bogunovic H, Zhang X, Xu Y
2022 IEEE Transactions on Medical Imaging
SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors
Fazekas B, Aresta G, Lachinov D, Riedl S, Mai J, Schmidt-Erfurth U, and Bogunovic H
2022 Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, In Press
Preprint link
AI-based monitoring of retinal fluid in disease activity and under therapy
Schmidt-Erfurth U, Reiter GS, Riedl S, Seeböck P, Vogl WD, Blodi BA, Domalpally A, Fawzi A, Jia Y, Sarraf D, Bogunović H.
2022 Progress in Retinal and Eye Research
Quantitative assessment of depolarization by the retinal pigment epithelium in healthy and glaucoma subjects measured over a large field of view
Motschi AR, Schwarzhans F, Desissaire S, Steiner S, Bogunović H, Roberts PK, Vass C, Hitzenberger CK, Pircher M
2022 PLoS ONE
Deep survival modeling of longitudinal retinal OCT volumes for predicting the onset of atrophy in patients with intermediate AMD
Rivail A, Vogl WD, Riedl S, Grechenig C, Coulibaly LM, Reiter GS, Guymer RH, Wu Z, Schmidt-Erfurth U, Bogunovic H
2023 Biomedical Optics Express
Automated inter-device 3D OCT image registration using deep learning and retinal layer segmentation
Rivas-Villar D, Motschi AR, Pircher M, Hitzenberger CK, Schranz M, Roberts PK, Schmidt-Erfurth U, Bogunović H
2023 Biomedical Optics Express
Characteristics of Henle’s fiber layer in healthy and glaucoma eyes assessed by polarization-sensitive optical coherence tomography
Motschi AR, Schwarzhans F, Desissaire S, Steiner S, Bogunović H, Roberts PK, Vass C, Hitzenberger CK, Pircher M
2023 Biomed Opt Express
Clinical validation for automated geographic atrophy monitoring on OCT under complement inhibitory treatment
Mai J, Lachinov D, Riedl S, Reiter GS, Vogl WD, Bogunovic H, Schmidt-Erfurth U
2023 Scientific Reports
Segmentation of Bruch's Membrane in Retinal OCT With AMD Using Anatomical Priors and Uncertainty Quantification
Fazekas B, Lachinov D, Aresta G, Mai J, Schmidt-Erfurth U, Bogunovic H
2023 IEEE Journal of Biomedical and Health Informatics
Few-shot out-of-distribution detection for automated screening in retinal OCT images using deep learning
Araújo T, Aresta G, Schmidt-Erfurth U, Bogunović H
2023 Scientific Reports
GAMMA challenge: Glaucoma grAding from Multi-Modality imAges
Wu J, Fang H, Li F, Fu H, Lin F, Li J, Huang Y, Yu Q, Song S, Xu X, Xu Y, Wang W, Wang L, Lu S, Li H, Huang S, Lu Z, Ou C, Wei X, Liu B, Kobbi R, Tang X, Lin L, Zhou Q, Hu Q, Bogunović H, Orlando JI, Zhang X, Xu Y
2023 Medical Image Analysis
Self-supervised Learning via Inter-modal Reconstruction and Feature Projection Networks for Label-Efficient 3D-to-2D Segmentation
Morano J, Aresta, G, Lachinov D, Mai J, Schmidt-Erfurth U, Bogunović H
2023 MICCAI in Lecture Notes in Computer Science
Transformer-Based End-to-End Classification of Variable-Length Volumetric Data
Oghbaie M, Araújo T, Emre T, Schmidt-Erfurth U, Bogunović H
2023 MICCAI in Lecture Notes in Computer Science
Adapting Segment Anything Model (SAM) for Retinal OCT
Fazekas B, Morano J, Lachinov D, Aresta G, Bogunović H
2023 OMIA in Lecture Notes in Computer Science
Pretraining of 3D image segmentation models for retinal OCT using denoising-based self-supervised learning
Rivail A, Araújo T, Schmidt-Erfurth U, Bogunović H
2024 Biomedical Optics Express
Automated INL/OPL subsidence detection in intermediate AMD with deep neural networks
Aresta G, Araújo T, Riedl S, Reiter G S, Guymer R H, Wu Z, Schmidt-Erfurth U, Bogunovic H
2024 TVST
Advancing the visibility of outer retinal integrity in neovascular age-related macular degeneration with high-resolution OCT
Prenner V, Reiter G S, Fuchs P, Birner K, Frank S, Coulibaly L, Gumpinger M, Bogunovic H, Schmidt-Erfurth U
2024 Canadian Journal of Ophthalmology
Advances in photoreceptor and retinal pigment epithelium quantifications in intermediate age-related macular degeneration: High-Res versus standard SPECTRALIS optical coherence tomography
Frank S, Reiter G S, Leingang O, Fuchs P, Coulibaly L, Mares V, Bogunovic H, Schmidt-Erfurth U
2024 RETINA
Interactive Deep Learning-Based Retinal OCT Layer Segmentation Refinement by Regressing Translation Maps
Aresta G, Araújo T, Fazekas B. Mai J, Schmidt-Erfurth U, Bogunovic H
2024 IEEE Access
Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT
Mai J, Lachinov D, Reiter GS, Riedl S, Grechenig C, Bogunovic H, Schmidt-Erfurth U.
2024 Ophthalmol Science
Learning Spatio-Temporal Model of Disease Progression With NeuralODEs From Longitudinal Volumetric Data
Lachinov D, Chakravarty A, Grechenig C, Schmidt-Erfurth U, Bogunovic H.
2024 IEEE Trans Med Imaging
(prepint)
Deep Multimodal Fusion of Data with Heterogeneous Dimensionality via Projective Networks
Morano J, Aresta G, Grechenig C, Schmidt-Erfurth U, Bogunovic H
2024 IEEE Journal of Biomedical and Health Informatics
(preprint)
Vacant positions
We are offering a PhD position in the domain of Machine Learning for Medical Imaging with applications in eye care. As part of our initiative on Artificial Intelligence (AI) in Retina, the focus of the research is on building robust, reliable, and interpretable models to characterize retinal pathology from 3D optical coherence tomography (OCT) images of the human eye to enable Trustworthy AI-based clinical decision support tools for retinal experts.
Research topics will be in one of the following areas: Self-supervised learning and foundation models, Uncertainty quantification and Bayesian deep learning, and Domain adaptation. The successful candidate will be immersed in an interdisciplinary environment working closely with a team of computer scientists, software engineers, and medical doctors in the fascinating and interdisciplinary field of AI in Retina. The output will have a real-world impact on the clinical management of patients suffering from retinal diseases, a leading cause of blindness today.
We are a world-leading group in AI/ML for retinal image analysis, based at the Medical University of Vienna, which is one of Europe’s premier institutions for biomedical and clinical research. The lab is located at the heart of historic Vienna, which has been named the World's Most Liveable City numerous times in a row.
Representative examples of our prior work:
https://arxiv.org/abs/2307.03008, https://arxiv.org/abs/2207.00458,
https://arxiv.org/abs/2308.09331v2, https://arxiv.org/abs/2211.04234
Your profile
- MSc degree or equivalent in AI, computer science, biomedical engineering, physics or similar.
- Excellent analytical, interpersonal, as well as written and oral communication skills in English.
- Strong programming (Python, PyTorch, JAX, TensorFlow, etc.) and applied math skills.
- Experience in machine/deep learning and statistics. Experience in computer vision, (bio)medical imaging is desirable but not a requirement.
- Enthusiasm about the applications of AI in medicine, and a collaborative and interdisciplinary mindset.
We offer
- Opportunity to work and do cutting-edge research in deep learning for medicine and healthcare.
- Immersion into an interdisciplinary and international research environment, and a multi-cultural lab.
- Access to extremely large multi-modal, curated, and annotated medical imaging datasets.
- Access to a dedicated high-performance computing (HPC) cluster containing the latest generation GPUs.
- Collaboration with several renowned academic institutions, as well as partnership with imaging device and pharmaceutical companies.
Apply by Sep 15th, 2024:
Applicants interested in machine learning for healthcare should send applications (ideally as a single PDF document) containing a CV, a cover letter, academic transcripts, and contact details of two references to: hrvoje.bogunovic@meduniwien.ac.at
Funding
Christian Doppler Laboratory for Artificial Intelligence in Retina – “CD AIR” is supported by the Christian Doppler Research Association in collaboration with Heidelberg Engineering GmbH.
In Christian Doppler Laboratories, application-oriented basic research is pursued at a high level, and expert scientists cooperate with innovative companies. The Christian Doppler Research Association is an international best practice example for promoting this collaboration.
Christian Doppler Laboratories are financed jointly by the public purse and the participating companies. The most important public sponsor is the Federal Ministry for Digital and Economic Affairs (BMDW).
Contact and address
Christian Doppler Laboratory for Artificial Intelligence in Retina
AI Institute / Center for Medical Data Science
Medical University of Vienna
Waehringer Strasse 25a
1090 Vienna, Austria
Phone: +43 1 40400 66148
Links
Affiliates
Imprint
Reseponsible for contents:
Hrvoje Bogunovic, PhD
Medical University of Vienna
AI Institute / Center for Medical Data Science
Währinger Strasse 25a
1090 Vienna