Keywords
Artificial Intelligence; Diagnostic Imaging; Image Enhancement; Imaging, Three-Dimensional; Medical Informatics; Medical Physics; Multimodal Imaging; Neural Networks (Computer); Ophthalmology; Pattern Recognition, Automated; Radiology; Tomography, Optical Coherence
Research group(s)
- ZEISS Lab
Research Area: The ZEISS Lab is a joint research initiative between the Medical University of Vienna and ZEISS. Research Area: Biophotonics. Research Topics: OCT Technologies | Translational OCT | Multimodal Biomedical Imaging
Members:
Research interests
My main research focus is the development of algorithms to process, analyze, generate and grade (bio-)medical imaging data of various imaging modalities.
- Medical image analysis
- Optical Coherence Tomography (OCT)
- Anomaly Detection (with Generative Adversarial Networks: AnoGAN, f-AnoGAN)
- Application of Computer Vision and Machine Learning methods on biomedical data
- Multimodal Learning of deep representations based on visual and textual (clinical) data
Techniques, methods & infrastructure
Machine Learning with main focus on (Deep) Neural Networks (Deep Learning)
Selected publications
- Nienhaus, J., Matten, P., Britten, A., Scherer, J., Höck, E., Freytag, A., Drexler, W., Leitgeb, R.A., Schlegl, T., Schmoll T. (2023) ‘Live 4D-OCT denoising with self-supervised deep learning’, Scientific Reports, 13(1). Available at: http://dx.doi.org/10.1038/s41598-023-32695-1.
- Niederleithner, M., De Sisternes, L., Stino, H., Sedova, A., Schlegl, T., Bagherinia, H., Britten, A., Matten, P., Schmidt-Erfurth, U., Pollreisz, A., Drexler, W., Leitgeb, R.A., Schmoll, T. (2023) "Ultra-Widefield OCT Angiography," in IEEE Transactions on Medical Imaging, vol. 42, no. 4, pp. 1009-1020, doi: 10.1109/TMI.2022.3222638.
- Schlegl, T., Stino, H. , Niederleithner, M., Pollreisz, A., Schmidt-Erfurth, U., Drexler, W., Leitgeb, R.A., Schmoll, T. (2022) "Data-centric AI approach to improve optic nerve head segmentation and localization in OCT en face images." arXiv preprint arXiv:2208.03868
- Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U. (2019). "f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks. Medical Image Analysis, 54, 30-44."
- Schlegl, T., Waldstein, S.M., Bogunovic, H., Endstraßer, F., Sadeghipour, A., Philip, A.-M., Podkowinski, D., Gerendas, B. S., Langs, G., Schmidt-Erfurth, U. (2018). "Fully automated detection and quantification of macular fluid in OCT using deep learning." Ophthalmology, 125(4), 549-558.