After activation, data will be sent to YouTube. Further information here: Data protection
English subtitles on Youtube available: click on the gear icon and select “Untertitel” – “English”
Dipl.-Ing. Lorenz Kapral

MedUni Wien RESEARCHER OF THE MONTH January 2025
Intraoperative hypotension is linked to postoperative complications and should be prevented. We developed a temporal fusion transformer (TFT) model to forecast mean arterial pressure (MAP) 7 minutes ahead using only low-resolution data (every 15 s) on patient demographics, vital signs, medications, and ventilation. Trained on 73,009 patients and tested on internal (n=8113) and external (n=5065) cohorts, the model achieved a mean absolute MAP prediction error of 4 mmHg internally and 7 mmHg externally. For binary prediction of hypotension (MAP <65 mmHg), the model’s discrimination was excellent, achieving AUROCs of 0.933 internally and 0.919 externally.
Selected Literature
-
Kapral, L., Dibiasi, C., Jeremic, N., Bartos, S., Behrens, S., Bilir, A., Heitzinger, C., & Kimberger, O. (2024). Development and external validation of temporal fusion transformer models for continuous intraoperative blood pressure forecasting. eClinicalMedicine. https://doi.org/10.1016/j.eclinm.2024.102797
-
Dibiasi, C., Agibetov, A., Kapral, L., Zeiner, S., & Kimberger, O. (2023). Predicting intraoperative hypothermia burden during non-cardiac surgery: A retrospective study comparing regression to six machine learning algorithms. Journal of Clinical Medicine, 12(13), 4434. https://doi.org/10.3390/jcm12134434
-
Bologheanu, R., Kapral, L., Laxar, D., Maleczek, M., Dibiasi, C., Zeiner, S., Agibetov, A., Ercole, A., Thoral, P., Elbers, P., et al. (2023). Development of a reinforcement learning algorithm to optimize corticosteroid therapy in critically ill patients with sepsis. Journal of Clinical Medicine, 12(4), 1513. https://doi.org/10.3390/jcm12041513
-
Maleczek, M., Laxar, D., Kapral, L., Kuhrn, M., Abulesz, Y.-T., Dibiasi, C., & Kimberger, O. (2024). A comparison of five algorithmic methods and machine learning pattern recognition for artifact detection in electronic records of five different vital signs: A retrospective analysis. Anesthesiology. https://doi.org/10.1097/aln.0000000000004971
-
Hriberšek, M., Eibensteiner, F., Kapral, L., Teufel, A., Nawaz, F. A., Cenanovic, M., Siva Sai, C., Devkota, H. P., De, R., Singla, R. K., et al. (2023). "Loved ones are not ‘visitors' in a patient's life"—The importance of including loved ones in the patient’s hospital stay: An international Twitter study of #HospitalsTalkToLovedOnes in times of COVID-19. Frontiers in Public Health, 11, 1100280. https://doi.org/10.3389/fpubh.2023.1100280
-
Lintschinger, J. M., Laxar, D., Kapral, L., Ulbing, S., Glock, T., Behrens, S., Frimmel, C., Renner, R., Klaus, D. A., Willschke, H., et al. (2024). A retrospective analysis of the need for on-site emergency physician presence and mission characteristics of a rural ground-based emergency medical service. BMC Emergency Medicine. https://doi.org/10.1186/s12873-024-01062-2
-
Kapral, L., Zawisky, M., & Abele, H. (2020). Neutron radiography and tomography of the drying process of screed samples. Journal of Imaging, 6(11), 118. https://doi.org/10.3390/jimaging6110118