Skip to main content English

Detail

Thomas  Scherer
Thomas Scherer

Department of Medicine III (Division of Endocrinology and Metabolism)
Position: Associate Professor

ORCID: 0000-0003-4980-706X
T +43 1 40400 47850
thomas.scherer@meduniwien.ac.at

Keywords

Adipose Tissue; Brain; Energy Metabolism; Fatty Liver; Insulin; Leptin

Research interests

Our lab is interested in understanding how hormones and nutrients are detected by the brain and how these metabolic signals are integrated in the CNS. Our research especially focuses on hormonal feedback mechanisms (i.e. insulin and leptin) that affect energy metabolism via modulation of autonomic nervous system outputs to organs, such as the liver, muscle, white and brown adipose tissue. Since the brain is able to communicate with several metabolic organs simultaneously via its neuronal connections, we are interested in elucidating novel neuronal regulatory pathways necessary to orchestrate glucose and lipid metabolism in selective metabolic states, such as high calorie feeding, insulin resistance, obesity and diabetes. New insights into the inter-organ crosstalk between the brain and the periphery under physiologic conditions and during disease likely provide novel drug targets to fight obesity and obesity-related comorbidities, like diabetes, non-alcoholic fatty liver disease and cardiovascular disease. Furthermore, we strive to translate our findings from basic research into the clinics in order to advance patient care in human metabolic disease.

Techniques, methods & infrastructure

Metabolic phenotyping in rodents (including clamp studies); stereotaxic infusion experiments; tracer dilution techniques, protein chemistry; qPCR; immunoassays; lipid profiling; translational studies in humans

Grants

  • The role of lepTin in regulating HepAtic Lipid metAbolisM (2019)
    Source of Funding: FWF (Austrian Science Fund), Programme Clinical Research (KLIF), Projekt KLI 782
    Principal Investigator
  • The role of intranasal insulin in regulating hepatic lipid and amino acid metabolism in humans (2016)
    Source of Funding: Medical Scientific Fund of the Mayor of the City of Vienna, Grant # 15228
    Principal Investigator
  • The role of brain insulin and leptin action in modulating hepatic triglyceride secretion (2014)
    Source of Funding: FWF (Austrian Science Fund), Stand-Alone Projects
    Principal Investigator

Selected publications

  1. Metz, M. et al. (2022) ‘Leptin increases hepatic triglyceride export via a vagal mechanism in humans’, Cell Metabolism, 34(11), pp. 1719-1731.e5. Available at: http://dx.doi.org/10.1016/j.cmet.2022.09.020.
  2. Scherer, T., Sakamoto, K. and Buettner, C. (2021) ‘Brain insulin signalling in metabolic homeostasis and disease’, Nature Reviews Endocrinology, 17(8), pp. 468–483. Available at: http://dx.doi.org/10.1038/s41574-021-00498-x.
  3. Hackl, M.T. et al. (2019) ‘Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis’, Nature Communications, 10(1). Available at: http://dx.doi.org/10.1038/s41467-019-10684-1.
  4. Scherer, T. et al., 2016. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes, 65(6), pp.1511–1520. Available at: http://dx.doi.org/10.2337/db15-1552.
  5. Scherer, T. et al., 2011. Brain Insulin Controls Adipose Tissue Lipolysis and Lipogenesis. Cell Metabolism, 13(2), pp.183–194. Available at: http://dx.doi.org/10.1016/j.cmet.2011.01.008.