Keywords
Biostatistics; Epidemiology; Regression Analysis
Research group(s)
- Prognosis research
Research Area: Prognosis research in medicine aims at understanding and improving future outcomes of individuals. We work on aspects of developing, translating and applying statistical methodology in prognosis research. Co-leaders: Daniela Dunkler and Georg Heinze
Members:
Research interests
My main research interest lies in statistical modeling, especially with small samples or rare events. In this situation, penalized regression techniques such as Firth's penalization or ridge regression usually yield more reliable estimates than maximum likelihood estimation. For instance, one interesting question is, which penalized logistic regression models yield acceptable effect estimates as well as acceptable predicted probabilities with small samples. Another important aspect is the assessment of the model performance by resampling techniques.
On the other hand, I am interested in the use of large administrative data bases, for example health claims data bases. A thorough understanding of the origin and structure of the data combined with a careful modeling approach is necessary to prevent wrong conclusions.
Selected publications
- Puhr, R. et al., 2017. Firth’s logistic regression with rare events: accurate effect estimates and predictions? Statistics in Medicine. Available at: http://dx.doi.org/10.1002/sim.7273.
- Mansournia, M.A. et al., 2017. Separation in Logistic Regression: Causes, Consequences, and Control. American Journal of Epidemiology, 187(4), pp.864–870. Available at: http://dx.doi.org/10.1093/aje/kwx299.
- Geroldinger, A. et al., 2018. Mortality and continuity of care – Definitions matter! A cohort study in diabetics A. Gruneir, ed. PLOS ONE, 13(1), p.e0191386. Available at: http://dx.doi.org/10.1371/journal.pone.0191386.