Skip to main content English


Christoph Rinner
Priv.-Doz. DI Dr. techn. Christoph Rinner

Center for Medical Data Science (Institute of Medical Information Management)
Position: Research Assistant

ORCID: 0000-0002-3847-5664
T +43 1 40400 66930


Data Mining; Database Management Systems; Electronic Health Records; Hospital Communication Systems

Research interests

My research concentrates on the area of recording, processing and exchanging health data in the context of medical documentations. In particular this includes the topics of standardization of electronic health records for scientific purposes.

Techniques, methods & infrastructure

Experience implementing the following international standards:

  • HL7 Standards (HL7 CDA, HL7 FHIR, HL7 v2 Messages)
  • ISO Standards (ISO/EN 13606-1, ISO/EN 13606-2)
  • IHE (ELGA-Implementierugnsleitfäden, IHE-XDS.b)

Data extraction and analysis using the following databases and clinical data warehouse solutions:

  • Health claims data 
  • FOKO (FOlgeKOsten)-Schnittstelle (Vorsorge(Gesunden)untersuchungen)
  • Minimal-Basic-Dataset (MBDS-Data)
  • AKIM RDA-Plattform
  • i2b2


  • imProve - Managing the Health Product Development (project partner) (2016)
    Source of Funding: Vienna Business Agency, Call Users in Focus 2016
    Principal Investigator

Selected publications

  1. Tschandl, P. Rinner, C. et al., 2020. Human–computer collaboration for skin cancer recognition. Nature Medicine. Available at:
  2. Tschandl, P. et al., 2019. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology, 20(7), pp.938–947. Available at:
  3. Rinner, C. et al., 2017. Long-term evaluation of the efficacy of digital dermatoscopy monitoring at a tertiary referral center. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 15(5), pp.517–522. Available at:
  4. Duftschmid, G., Chaloupka, J. & Rinner, C., 2013. Towards plug-and-play integration of archetypes into legacy electronic health record systems: the ArchiMed experience. BMC Medical Informatics and Decision Making, 13(1). Available at:
  5. Rinner, C. et al., 2010. Semantic Validation of Standard-based Electronic Health Record Documents with W3C XML Schema. Methods of Information in Medicine, 49(3), pp.271-280. Available at: