Keywords
Image Processing, Computer-Assisted; Medical Physics; Neural Networks (Computer); Optical Imaging; Physics; Tomography, Optical Coherence
Research group(s)
- Werkmeister Group
Head: Rene Werkmeister
Research Area: We are working on the identification and quantification of novel OCT imaging biomarkers.
Members:
Research interests
My research focus is on Optical Coherence Tomography (OCT) and its application in ophthalmology and dermatology.
Selected publications
- Pfister, M. et al., 2021. Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images. Annals of the New York Academy of Sciences. Available at: http://dx.doi.org/10.1111/nyas.14582.
- Pfister, M. et al., 2021. Optical Coherence Tomography Angiography Monitors Cutaneous Wound Healing under Angiogenesis-Promoting Treatment in Diabetic and Non-Diabetic Mice. Applied Sciences, 11(5), p.2447. Available at: http://dx.doi.org/10.3390/app11052447.
- Santos, V.A. dos et al., 2019. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomedical Optics Express, 10(2), p.622. Available at: http://dx.doi.org/10.1364/boe.10.000622.
- Pfister, M. et al., 2019. Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks. Biomedical Optics Express, 10(3), p.1315. Available at: http://dx.doi.org/10.1364/BOE.10.001315.
- Stegmann, H. et al., 2020. Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus. Biomedical Optics Express, 11(3), p.1539. Available at: http://dx.doi.org/10.1364/BOE.386228.