Skip to main content

Detail

Christine Wallisch
Christine Wallisch

Center for Medical Statistics, Informatics and Intelligent Systems (Institute of Clinical Biometrics)
Position: Research Associate (Postdoc)

ORCID: 0000-0003-3943-6234
T +43 1 40400 66360
christine.wallisch@meduniwien.ac.at

Keywords

Biostatistics; Data Interpretation, Statistical; Models, Statistical; Regression Analysis; Risk Assessment

Research group(s)

Research interests

The general focus of my research is statistical modeling aiming at etiology and prediction.

A statistical model tries to mimic or simplify the reality. It is used to predict or explain an outcome of interest (e.g. the occurance of cardiovascular disease within 5 years) using several predictors or risk factors (e.g. cholesterol level, smoking status, ...).

Techniques, methods & infrastructure

My methodological research concentrates on variable selection methods used for selection of predictors or risk factors in a statistical model. I investigate the advantages and disadvantages of applying data-driven variable selection methods. Whenever applying such methods, the robustness of a model - also called model stability - must be verified as small changes in the data could lead to a different set of selected variables. This topic is a part of my methodological research that I studied in my PhD thesis.

My applied research is mainly in the fields of cardiology and nephrology. One of the projects targets prediction models for the occurance of cardiovascular disease within 5 years. Cardiovascular disease are one of the main causes of death and disability. Therefore, cardiovascular risk is assessed in the Austrian preventive health screening program. In our project, we evaluated existing risk prediction models and updated them to improve their predictive performance in the Austrian population. In another project, we investigate the benefit on survival of undergoing a kidney transplantation instead of remaining on dialysis. In particular, we are interested if this treatment strategy is still beneficial for elderly recipients who are waitlisted for a transplantation over serveral years.

Selected publications

  1. Heinze, G., Wallisch, C. & Dunkler, D., 2019. Authors’ reply. Biometrical Journal, 61(6), pp.1598–1599. Available at: http://dx.doi.org/10.1002/bimj.201900196.
  2. Wallisch, C. et al., 2019. External validation of two Framingham cardiovascular risk equations and the Pooled Cohort equations: A nationwide registry analysis. International Journal of Cardiology, 283, pp.165–170. Available at: http://dx.doi.org/10.1016/j.ijcard.2018.11.001.
  3. Heinze, G., Wallisch, C. & Dunkler, D., 2018. Variable selection - A review and recommendations for the practicing statistician. Biometrical Journal, 60(3), pp.431–449. Available at: http://dx.doi.org/10.1002/bimj.201700067.
  4. Heinze, G. et al., 2015. Chances and challenges of using routine data collections for renal health care research. Nephrology Dialysis Transplantation, 30(suppl 4), pp.iv68–iv75. Available at: http://dx.doi.org/10.1093/ndt/gfv110.