Skip to main content

Detail

Gunpreet Oberoi
Dr. Gunpreet Oberoi, PhD

Center for Medical Physics and Biomedical Engineering
Position: Research Associate (Postdoc)

ORCID: 0000-0002-0460-0199
T +43 1 40400 19890
gunpreet.oberoi@meduniwien.ac.at

Keywords

Imaging, Three-Dimensional; Medical 3D-Printing; Neonatology; Patient Simulation; Tissue Engineering

Research group(s)

Research interests

My initial years in research were spent in establishing complex shaped three- dimensional oral micro-tissues as an in vivo like platform for biocompatibility testing of 3D printing materials and future bioprinting. My interest lies in establishing 4D (smart) and 3D printed animal and human simulation models to replace, reduce and refine pre-clinical and clinical experiments. These models are used for designing and developing medical devices, surgical planning and skill acquisition in human and veterinary medicine. We work in collaboration with the department of neonatology and radiology to create 3D neonatal and prenatal simulation models for skills training and preoperative planning. In parallel, we are constantly endeavouring to combat the problem of Cleft lip and palate (1:700 live births) in children belonging to low-economic areas of Asia, Africa and Europe. To address this issue, we have developed an affordable 3D printed physiological oral prosthesis called ‘Smart Obturator’. Ultimately, our aim is to utilize 3D printing in providing standard healthcare to the masses and escalating patient-safety.

Selected publications

  1. Wagner, M., Werther, T., Unger, E., Kasprian, G., Dovjak, G., Dorfer, C., Schned, H., Steinbauer, P., Goeral, K., Olischar, M., Roessler, K., Berger, A., & Oberoi, G. (2021). Development of a 3D printed patient-specific neonatal brain simulation model using multimodality imaging for perioperative management. Pediatric research, 10.1038/s41390-021-01421-w. Advance online publication. https://doi.org/10.1038/s41390-021-01421-w
  2. Hatamikia, S. et al., 2020. Additively Manufactured Patient-Specific Anthropomorphic Thorax Phantom With Realistic Radiation Attenuation Properties. Frontiers in Bioengineering and Biotechnology, 8. Available at: http://dx.doi.org/10.3389/fbioe.2020.00385.
  3. Oberoi, G. et al., 2018. 3D Printing—Encompassing the Facets of Dentistry. Frontiers in Bioengineering and Biotechnology, 6. Available at: http://dx.doi.org/10.3389/fbioe.2018.00172.
  4. Oberoi, G. et al., 2019. Contraction dynamics of dental pulp cell rod microtissues. Clinical Oral Investigations, 24(2), pp.631–638. Available at: http://dx.doi.org/10.1007/s00784-019-02917-w.
  5. Oberoi, G. et al., 2020. Titanium dioxide-based scanning powder can modulate cell activity of oral soft tissue - Insights from in vitro studies with L929 cells and periodontal fibroblasts. Journal of Prosthodontic Research, 64(1), pp.34–42. Available at: http://dx.doi.org/10.1016/j.jpor.2019.05.001.