Skip to main content English

Detail

Wolfgang Wadsak
Assoc.-Prof. Wolfgang Wadsak, MSc. PhDSenior Scientist and Consultant Medicinal Radiochemistry

Department of Biomedical Imaging and Image-guided Therapy (Division of Nuclear Medicine)
Position: Associate Professor

ORCID: 0000-0003-4479-8053
T +43 1 40400 55330
wolfgang.wadsak@meduniwien.ac.at

Further Information

Keywords

Biomarkers, Pharmacological; Carbon Radioisotopes; Fluorine Radioisotopes; Gallium Radioisotopes; Molecular Imaging; Positron-Emission Tomography; Radiochemistry; Radionuclide Imaging; Radiopharmaceuticals

Research interests

The development of molecular imaging probes for PET is gaining more and more interest since applied diagnostics and stratification of patients for pinpointed treatment are the methods of choice in a 4P medicine environment. Hence, selective and specific radioactive tracers incorporating positron emitter nuclides are needed and their development requires cooperative research between (radio)chemists, (radio)pharmacists, clinicians, physicists, nutrion scientists, system biologists, network analyticians and technologists - to name just a few!

My special focus lies on the development of novel small-molecule PET-radiotracers and their translational evaluation to bring them into (first) in-human use. Furthermore, I also lead the COMET module microONE (Microplastic Particles: A Hazard for Human Health?) under the consortium lead of CBmed GmbH ("Center of Biomarker Research in Medicine"), a research centre based in Graz.

Techniques, methods & infrastructure

Medicinal Radiochemistry at the Division of Nuclear Medicine of the Medical University of Vienna comprises of all necessary equipment and infrastructure to develop novel radiopharmaceuticals, provide full radiopharmaceutical quality control and enable pre-clinical testing as a prerequisite for translation into a clinical setting.

  • Medical Cyclotron (GE PETtrace 860)
  • Several Hot-Cells (=fully shielded fume hoods; partly LAF-boxes; Comecer, van Gahlen)
  • A variety of fully automated synthesizers (e.g. GE FASTlab; Scintomics GRP+; Elysia-Raytest GAIA; EZAG PharmTracer; GE TRACERlab FxC Pro; Advion NanoTek)
  • Specialized QC equipment (radio-TLC, radio-HPLC, GC, ...)

Selected publications

  1. Wadsak, W. and Mitterhauser, M. (2010) ‘Basics and principles of radiopharmaceuticals for PET/CT’, European Journal of Radiology, 73(3), pp. 461–469. Available at: http://dx.doi.org/10.1016/j.ejrad.2009.12.022.
  2. Wadsak, W. et al. (2007) ‘18F fluoroethylations: different strategies for the rapid translation of 11C-methylated radiotracers’, Nuclear Medicine and Biology, 34(8), pp. 1019–1028. Available at: http://dx.doi.org/10.1016/j.nucmedbio.2007.06.012.
  3. Wadsak, W. et al. (2006) ‘[18F]FETO for adrenocortical PET imaging: a pilot study in healthy volunteers’, European Journal of Nuclear Medicine and Molecular Imaging, 33(6), pp. 669–672. Available at: http://dx.doi.org/10.1007/s00259-005-0062-6.
  4. Rischka, L. et al. (2021) ‘First-in-Humans Brain PET Imaging of the GluN2B-Containing N-methyl-d-aspartate Receptor with (R)-11C-Me-NB1’, Journal of Nuclear Medicine, 63(6), pp. 936–941. Available at: http://dx.doi.org/10.2967/jnumed.121.262427.
  5. Limberger, T. et al. (2022) ‘KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis’, Molecular Cancer, 21(1). Available at: http://dx.doi.org/10.1186/s12943-022-01542-8.