Keywords
Artificial Organs; Biomechanical Phenomena; Manufactured Materials; Materials Testing; Plastics
Research group(s)
- Additve Manufacturing for Medical Research - M3dRES
Research Area: The M3dRES project aims at establishing a unique infrastructure devoted to 3d-printing for medical research in a strongly interdisciplinary environment.
Members: - Cardiovascular Dynamics and Artificial Organs
Research Area: The Working Group deals with investigation, development and simulation of cardiovascular devices and hemodynamics for diagnostic and therapeutic tools.
Members: - Ludwig Boltzmann Institute for Cardiovascular Research
Head: Johann Wojta
Research Area: The Ludwig-Boltzmann-Cluster for Cardiovascular Research focuses on interdisciplinary research of therapies for cardiovascular diseases.
Members:
Research interests
Mechanical characterization of small blood vessels and vascular grafts
Small diameter blood vessel substitutes require special materials, structures and mechanical behavior to ensure long term functionality. Our group is developing vascular grafts using the electrospinning process which creates constructs out of nanostructured polymer fibers, thus mimicking the structure of the cell surrounding. The mechanical properties can be influenced by electrospinning parameters, fiber orientations and materials. The biomechanical characterization of blood vessels in vitro is not only important as basis for design and production of blood vessel substitutes but also for the investigation of various vascular diseases and for the development of mathematical models.
Techniques, methods & infrastructure
Mechanical Characterization of Soft Tissue and Vascular Implants
Testing procedures to analyze mechanical behavior of tissue, vasculature and prostheses are available in our lab. Two measurement systems cover a wide measurement range. A BOSE ElectroForce testbench system with a 200N Linear motor (Bose Corp. MN, USA) is used for lower forces (0.01 N – 200 N) and high dynamic measurements (up to 100 Hz). A conventional tensile testing apparatus (Beta 10-2.5, Messphysik GmbH, Fürstenfeld, Austria) with contactless strain measurement is used for larger specimen and forces.
Selected publications
- Stoiber, M. et al., 2020. Mechanical Testing of Vascular Grafts. Tissue-Engineered Vascular Grafts, pp.1–28. Available at: http://dx.doi.org/10.1007/978-3-319-71530-8_3-1.
- Stoiber, M. et al., 2020. Impact of the testing protocol on the mechanical characterization of small diameter electrospun vascular grafts. Journal of the Mechanical Behavior of Biomedical Materials, 104, p.103652. Available at: http://dx.doi.org/10.1016/j.jmbbm.2020.103652.
- Stoiber, M. et al., 2019. Dynamic measurement of centering forces on transvalvular cannulas. Artificial Organs, 44(4). Available at: http://dx.doi.org/10.1111/aor.13597.
- Stoiber, M. et al., 2015. A method for mechanical characterization of small blood vessels and vascular grafts. Experimental Mechanics, 55(8), pp.1591–1595. Available at: http://dx.doi.org/10.1007/s11340-015-0053-x.
- Stoiber, M. et al., 2013. An Alternative Method to Create Highly Transparent Hollow Models for Flow Visualization. The International Journal of Artificial Organs, 36(2), pp.131–134. Available at: http://dx.doi.org/10.5301/ijao.5000171.