Keywords
Diabetic Retinopathy; Diagnostic Imaging; Macular Degeneration; Ophthalmology; Optical Imaging; Retina; Retinal Vein Occlusion; Vascular Endothelial Growth Factors; Vitreous Body
Research group(s)
- Christian Doppler Laboratory for Ophthalmic Image Analysis (OPTIMA)
Research Area: Since 2013 the interdisciplinary OPTIMA group is pioneering in the introduction of artificial intelligence into ophthalmology.
Members:
Research interests
- Computational analysis of large-scale ophthalmic imaging data
- Medical image analysis
- Machine learning, Artificial intelligence
- Age-related macular degeneration
- Optical coherence tomography
- Clinical trial design
Techniques, methods & infrastructure
- Databases and web-applications for management of imaging data in large-scale clinical trials
- Automated analysis of retinal optical coherence tomography data
- Population modelling of ophthalmic imaging data
- High-performance computing infrastructure
Selected publications
- Waldstein, S.M. et al., 2016. Predictive Value of Retinal Morphology for Visual Acuity Outcomes of Different Ranibizumab Treatment Regimens for Neovascular AMD. Ophthalmology, 123(1), pp.60-69. Available at: http://dx.doi.org/10.1016/j.ophtha.2015.09.013.
- Schmidt-Erfurth, U. & Waldstein, S.M., 2015. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Progress in Retinal and Eye Research. Available at: http://dx.doi.org/10.1016/j.preteyeres.2015.07.007.
- Bogunovic, H. et al., 2017. Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Investigative Opthalmology & Visual Science, 58(7), p.3240. Available at: http://dx.doi.org/10.1167/iovs.16-21053.
- Mayr-Sponer, U. et al., 2013. Influence of the Vitreomacular Interface on Outcomes of Ranibizumab Therapy in Neovascular Age-related Macular Degeneration. Ophthalmology, 120(12), pp.2620-2629. Available at: http://dx.doi.org/10.1016/j.ophtha.2013.05.032.
- Waldstein, S.M. et al., 2017. Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning. Scientific Reports, 7(1). Available at: http://dx.doi.org/10.1038/s41598-017-02971-y.